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ABSTRACT
Title of Dissertation: Nonholonomic Geometry, Mechanics and Control
Rui Yang, Doctor of Philosophy, 1992
Dissertation directed by: P. S. Krishnaprasad, Professor

Department of Electrical Engineering

This dissertation is concerned with dynamic modeling and kinematic control
of constrained mechanical systems with symmetry from a geometric point of view.
Constraints are defined via the characteristics of distributions or codistributions on the
tangent bundle (velocity phase space) of configuration space. Lie symmetry groups
acting on the systems are assumed to leave both Lagrangian and constraints invariant.
As a special case of mechanical systems with holonomic constraints, we rigorously
analyze the kinematics and dynamics of floating, planar four-bar linkages. The analyses
include topological description of the configuration space, symplectic and Poisson
reductions of the dynamics and bifurcation of relative equilibria. For kinematic control of
nonholonomic systems, we mainly study the related optimal control problem for a system
consisting of a rigid body with two oscillators. In particular, the intrinsic formulation and
explicit solvability of necessary conditions for the optimal control are investigated from
a Hamiltoniaﬁ point of view. In the study of the dynamics of Lagrangian systems with
constraints, the nonholonomic distributions are defined via arbitrary choices of principal
connections. We show that, under our hypotheses on constraints and exterior force,

" the dynamics of a nonholonomic Lagrangian system with non-Abelian symmetry can be
reduced to a lower dimensional space determined by the principal fiber bundle. The
reduced dynamic equations- are formulated explicitly. This formulation generalizes the
one for classical Chaplygin systems which possess Abelian symmetry, and the one having
non-Abelian symmetry but with linear constraints. In addition, if a special principal
connection, that is, the mechanical connection by Kummer and Smale, is considered,
our formulation for nonholonomic systems also leads to the one in Lagrangian reduction
discovered recently by Marsden and Scheurle. The results of this dissertation have direct

application in space robotics and nonholonomic motion planning in robotics.
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CHAPTER 1

INTRODUCTION

The motions of various mechanical systems which we wish to synthesize and control
>often have to satisfy certain kinds of restrictions imposed by the natural environment
or the structure of the systems themselves. In mechanics, such restrictions are called
constraints. Although the fundamental theory of mechanical systems with constraints
was established and developed in the last century, recent research and developments
in analytical mechanics and control theory from a geometric viewpoint have inspired a
strong desire to reinterpret and reformulate the theory of constrained dynamics in an
intrinsic geometric way. In addition, many practical problems in recent investigations
in mechanical and electrical engineering, such as modeling and control of mobile robots
and dextrous robotic hands, and the design and control of spacecraft, also show the need
for a deeper understanding of the role that constraints play in mechanical systems.

In classical Lagrangian mechanics, constraints are usually classified into two
types: holonomic and nonholonomic constraints. Roughly speaking, if we exclude those
constraints which are given by a set of inequalities or time dependent equations, the
former imposes a limitation on the motion of the system to a subspace of the configuration

space, but the latter imposes a limitation on the motion of the system to a subspace of



the velocity phase space. If we further restrict our attention to constraints which can be
expressed via a set of linear functions of velocities of the motion, using Frobenius’ theorem
in differential geometry, the distinction between two kinds of classical constraints can be
given rigorously via integrability of corresponding distributions. From this point of view,
a holonomic constraint is characterized by an integrable distribution, and the motion of
the system under study is restricted to a leaf of the corresponding foliation. Then, using
suitable local coordinates, one can always describe the motion of the constrained system
by a set of unconstrained dynamic equations on a lower dimensional space. Because
of this, in analytical mechanics, establishing the d'ynamic equations and determining
the motion for systems with holonomic constraints are not considered as challenging
problems in general. However, from a practical point view, it is always of interest to
understand how the constraints affect the complexity of dynamic motions of a specific
system. In particular, such understanding usually generates sophisticated strategies for
design and control of the system. On the other hand, using geometric interpretations,
classical nonholonomic constraints can be characterized by nonintegrable distributions on
the configuration space. Then the real motion of a mechanical system with nonholonomic
constraints must satisfy the condition that the tangent vector of a path in configuration

space belongs to such distribution.

Treating the classical constraints in the geometric way as above, one can think of
more general questions related to the theory of distribution on manifolds and various
nonholonomic problems. For instance, it is known that the motion of a Lagrangian
mechanical system can be described completely by a special vector field on the tangent
bundle of its configuration space (i.e., via second order differential equations). Therefore,
from a geometric point of view, it is more natural to consider the constraints in terms of
distributions on the tangent bundle. In doing so, certain constraints which are not
linear in velocity but, for example, those described by the null set of some set of
functions on tangent bundle, can also be given geometric interpretations. Hence, in
a certain sense, a geometric treatment generalizes the range of constrained problems we

can deal with. A natural question that follows is that of reformulating the Lagrange-



d’Alembert principle in an intrinsic form. In [46,47], this and related issues are carefully
studied. There is another viewpoint in seeking a generalization of constrained problems
in mechanics. Notice that the concept of distribution in differential geometry is concerned
only with the mathematical meaning of a constraint. In dealing with mechanics, classical
constraints (e.g., geometric and kinematic constraints) are just one means to define
or construct related distributions. This suggests that one can think of other kinds of
constraints coming from, for instance, conservation laws as a source of distributions. In
[5], the former are called phenomenological constraints, the latter are called symmetry

constraints.

In mathematics, general nonholonomic problems are those of determining a class of
curves in terms of a certain law or principle or criterion such that it satisfies restrictions
given by distributions on a given space. From this point of view, it is clear that the
curves determined fro;n constrained classical mechanical systems satisfy the Lagrange-
d’Alembert principle. One can certainly consider such problems in terms of other criteria
or principle, for instance, Hamilton’s principle of least action. Of course, it has been
known that the latter does not give real motions for classical mechanical systems if
the constraints are nonholonomic. Recent research in this direction leads to certain
nonstandard problems of geodesics [48]. In [8] these are referred to as problems of
singular Riemannian geometry and Strichartz speaks of sub-Riemannian geometry [45].
In mechanics, this problem is closely related to the problem of nonholonomic motion

planning or kinematic control [22,23,31].

This dissertation is concerned with both types of problems with constraints
mentioned above. The main feature here is that we focus on systems which possess group
symmetries. The fundamental mathematical tools applied here are those which have been
widely used in geometric mechanics, such as Lie groups and Lie algebras, symplectic and
Poisson geometry, Lagrangian and Hamiltonian mechanics, .reductions and connection

theory on principal fiber bundles. This dissertation is organized as follows.

In Chapter II, after reviewing some definitions, notations and important theorems

in differential geometry and geometric mechanics, we introduce an invariant/intrinsic



formulation of Lagrangian mechanics due to Vershik [46] and Vershik and Faddeev [47].
Such a formiﬂation makes it possible for us to restate Lagrange-d’Alembert principle
with constraints on second tangent bundle using the concept of virtual displacement in
classical mechanics. It is easy to show that this formulation is equivalent to the one
using constraint reaction force considered in [46,47]. But, our expression of Lagrange-
d’Alembert principle for constrained systems turns out to be very important in Chapter

V, in which symmetries are associated to the systems under study.

In Chapter III, we study the kinematics and dynamics of the simplest coupled
mechanical systems with holonomic constraints, that is the planar, floating four-bar
linkages. Although a floating four-bar linkage is a particular mechanism with holonomic
constraint, it illustrates precisely what we mentioned earlier, that is, its dynamic
properties in comparison with an open chain are very different. This chapter provides
complete analyses including topological description of the configuration space, symplectic

and Poisson reductions of the dynamics and bifurcation of relative equilibria.

Chapter IV addresses reduction and explicit solvability of optimal control problems
on principal bundles with connections from a Hamiltonian point of view. The particular
mechanical system we consider is a rigid body with two oscillators. The optimal control
problem is posed by considering a special nonholonomic variational problem, in which
the nonholonomic distribution is defined via a connection. The necessary conditions for
the optimal control problem are determined intrinsically by a perturbation method and
a Hamiltonian formulation. The necessary conditions admit the structure group of the
principal bundle as a symmetry group of the system. Thus the problem is amenable
to Poisson reduction. Under suitable hypotheses and approximations, we find that the
reduced system possesses additional Abelian symmetry. Applying Poisson reduction
again, we obtain a further reduced system and corresponding first integral. The model
problem described here is strongly motivated by a troublesome phenomenon of drift
observed in the Hubble Space Telescope due to thermo-elastically driven vibrations
of the solar panels arising from the day-night thermal cycling on-orbit. The point

mass oscillators in our problem may be viewed as one-mode truncations of the elasto-



mechanical problem.

The most important contribution of this dissertation to nonholonomic Lagrangian
mechanics is contained in Chapter V, in which we discover a reduction theorem for the
Lagrangian systems with non-Abelian symmetries and certain nonholonomic constraints.
This chapter is motivated by Chaplygin’s reduction formulation in classical mechanics
with Abelian symmetry. It is known that, in general for a system with nonholonomic
constraints, one cannot get reduced dynamics on a lower dimensional space by elimi-
nating constraints, as one can do for holonomic constraints. Instead, one usually has to
expand the space by bringing in more variables, i.e., Lagrange multipliers. But Chap-
lygin showed that one can do such reduction if the system and constraints admit an
Abelian symmetry. A natural question one can ask is if this is also possible for con-
strained systems which admit a non-Abelian symmetry? This question is answered in
some detail in this chapter. The constraints here are constructed on principal fiber bun-
dles with connections. Under our assumption, they take the form of affine functions
in velocity, instead of linear ones. In using distribution theory to interpret constraints,
one has to consider the distributions on the tangent bundle of the configuration space,
rather than on configuration space. The approach of constructing constrained dynamics
on the second tangent bundle introduced in Chapter II can be directly applied here.
Since we consider constraints from principal connections which decompose the velocity
phase space, the dynamics of the system can be described on a horizontal subspace and,
consequently, on the tangent bundle of the quotient space of the configuration space
with respect to the symmetry group. Then our goal to reduce the dynamics on a lower
dimensional space can be reached. Following this idea, we obtain a reduction theorem.
An important application of our reduction theorem is the derivation of Lagrangian re-
duction, where the principal connection used is the mechanical connection determined
by the conserved momentum map. In this application, our result coincides with the one
in [27]. Some representative examples are also studied at the end of this chapter.

In Chapter VI, we reconsider the main results in this dissertation and point out

some topics for future research.






CHAPTER II

PRELIMINARIES

In this chapter, we first review some definitions, notations and important theorems
in differential geometry and geometric mechanics. Concepts and results that will be used
frequently in the following chapters are the main focus of this chapter. The second aim
of this chapter is to introduce an invariant formulation of Lagrangian mechanics due
to Vershik [46] and Vershik and Faddeev [47]. In particular, we are interested in the
statement of Lagrange-d’Alembert principle for systems with constraints. An important
feature of Section 2.2 is that we work with constraints on vector fields that behave as
virtual displacements in classical mechanics. Such a presentation leads to the form of
Lagrange-d’Alembert principle expressed in terms of reaction forces due to constraints,
which is the form given in [46,47]. Our expression of Lagrange-d’Alembert principle
for constrained systems will play a crucial role in Chapter V, where symmetries will be

associated to the systems under study.



2.1 Geometric Mechanics
In this section, we recall some basic definitions, commonly used notations and
important theorems in geometric mechanics, which will be cited in the following chapters.

The useful references are [1,2].

2.1.1 Lie Groups and Group Actions
A Lie group G is a differentiable manifold and a group, for which the group
operations, product and inverse, are differentiable maps. We denote by R, : G —
G:hw— hg and Ly : G —» G : h — gh right and left translation, respectively. One
can show that the tangent space of G at identity e, T.G, forms a Lie algebra which is
isomorphic to the set of left invariant vector fields on G (see [1], Chapter 4). We denote
by G the Lie algebra of G. The Lie bracket of £ and 7 is denoted as [£,7],V€, 7€ G.
Let @ be a smooth fnanifold. A (left) action of a Lie group G on @ is a smooth
mapping
$:GxQ—Q: (9,0) 2(g,9) = By(0) S g-q (2.1.1)

such that ®(e,q) = ¢,Yq € @, and ®(g, ®(h,q)) = ®(gh,q),Vg,h € G,Vq € Q. Certain
induced actions of G on manifolds M are of particular interest. Let M = T@, the

tangent bundle of Q. The tangent lift action of G on T(Q) is given by
T :GxTQ-TQ: (9,v) — T,®,v,, (2.1.2)

where T, ®, denotes the linearization of &, at ¢ € Q). Let M = T"(Q, the cotangent °

bundle of Q. The cotangent lift action of G on T*Q is given by
T . GXT"Q—-T"Q: (g9,09) — T ®,10y, (2.1.3)

where T, ®, is the linear dual of T,®,. Let M = G. The adjoint action of G on G is
defined by

Ad:GxG—G: (g,6)— Adyé S To(Ry—1Lg)E. (2.1.4)

Let M = G*, the dual of Lie algebra G of G. Then the co-adjoint action of G on G* is
defined by

Ad* :GxXG* =G : (g,v)~ Ad_v, (2.1.5)



where the operation Adj is given by (Adjv,n) = (v, Ad,n),for any n € G.
Let exp(t€) be the integral curve of the left invariant vector field on G associated

to £ € G. For a group action as in (2.1.1) and & € G, the vector field defined by

d
€olg) = 7 t_o‘b(ezp(tE),q), Yge @ (2.1.6)

is called infinitesimal generator or fundamental vector field of the action corresponding
to €. One can show that if the group G acts on @ freely and effectively, the mapping,
£ — &g is an isomorphism of the Lie algebra G into the Lie algebra Z(Q), the set of all

smooth vector fields on @ (cf. [33]). For the adjoint action defined as in (2.1.4),

£5(n) = adgn £[&,7] VY €G. (2.1.7)

For the co-adjoint action defined in (2.1.5),

{g-(@) = —adia, Va€G™. (2.1.8)

2.1.2 Hamiltonian Systems

We first consider Hamiltonian systems on a symplectic manifold. A symplectic
manifold (M, Q) is an even dimensional, smooth manifold M together with a closed,
nondegenerate two-form 2, called symplectic structure, on M. Given a smooth function
H; called the Hamiltonian or energy function, on M, thé Hamiltonian vector field Xy

is the smooth vector field on M satisfying
QXy,Y)=dH-Y VY € Z(M). (2.1.9)

Let Q be an n-dimensional smooth manifold, which represents the configuration
space of a mechanical system. Let M = T*Q be the momentum phase space,
coordinatized locally by 2z = (q1,***,¢n,P1,"*+,Pn). One can show that a symplectic
structure on T*Q is a canonical two-form which is represented locally by Qp =
S ,dg; Adp; (cf. Theorem 3.2.10 in {1]). Then the Hamiltonian vector field is given

locally by Xy = AVH, where matrix A = (ﬂOI I(;L) .



One can also work with a symplectic structure on M = TQ, the velocity
phase space. Given a smooth function L, called Lagrangian, on TQ, the Legendre
transformation is defined by fiber derivative FL : TQ — T*(@ associated to L. Let
Qr = (FL)*Qg. One can show that if L is regular, Qp is symplectic. Hence, (TQ, Q)

is a symplectic manifold. Let (¢,v) € TQ and the energy function
N
HL(q, ’U) = FL('U) ‘v - L(Qav)'
A vector field Xg, , called Lagrangian vector field, on T(Q) is determined by
WXy, Y)=dHL Y, VY € Z(TQ). (2.1.10)

One shows that if L is hyperregular, i.e., FL is a diffeomorphism and the Hamiltonian
HEH r o (FL)™!, then the base integral curves given by bundle projections of the
integral curves of Xy, and Xy on ) are identical.

We next consider Hamiltonian systems defined on Poisson manifolds. A Poisson
manifold (M, {-,-}) is a smooth manifold M together with an R-bilinear map on
C=(M):

{}:C®(M) x C=(M) — C=(M),
referred to as Poisson structure or Poisson bracket, which satisfies the following axioms:
for fi e C*(M),i=1,2,3,
1) Skew Symmetry: {fi, fo} = —{f2, 1}

2) Leibniz’ Rule:  {f1, fofs} = {fi, 2} fs + f2{f1, f3};
3) Jacobi Identity:  {f1,{fe, fa}} + {fs, {1, 23} + {fo, {5, Ai}} = 0.

A Poisson structure can be expressed uniquely through a contravariant skew-symmetric

two-tensor A on M, called Poisson tensor, such that

{/,93(2) = A(2)(df (2), dg(2)), Vze M. (2.1.11)

If M is an n-dimensional manifold (7 is finite), A is given by an n X n skew-symmetric

matrix, also denoted as A, and the Poisson bracket can be expressed as

{£,9}(2) = VT (2)A(2)Vg(2). (2.1.12)



Given a smooth function H, referred to as Hamiltonian, on M, the Hamiltonian

vector field on (M, {-,-}) is defined by the relation

Xu(f)={f,H}. (2.1.13)

The uniqueness of such a vector field can be proved, cf. [30]. Let ¢(¢) be the flow of

Xy and Z be a coordinate function, we then have
d
5(2((1))) = {Z(#(¥)), H }- (2.1.14)
In the finite dimensional case, we have
2= A(2)VH(2), (2.1.15)

where z(t) = Z(#(t)). A function C on M is a Casimir function if {C,F} = 0 for all
FeC*®(M),ie., C is a constant along the flow of all Hamiltonian vector fields.

Remark 2.1.1: Every symplectic manifold is a Poisson manifold by defining the
Poisson structure to be {f,g} = Q(X;, X,). It is a theorem of Lie and Kirillov
that, in general, Poisson manifolds can be decomposed into the symplectic leaves of
a generalized foliation [25]. As an example, the Lie-Berezin-Kirillov-Kostant-Souriau
Poisson structures on the dual space of Lie algebra G, G*, is considered. One can show

that the symplectic leaf through each point g in G* is the coadjoint orbit through u
(cf. [21]). [}

2.1.3 Symmetry and Reduction
Let (M,{, }) be a Poisson manifold and let Lie group G act on (M,{, })
canonically, that is, for each g € G, the map ®;, : M — M preserves the Poisson

structure, i.e.,

{fi,fa}o @y ={fr0®y, fa0®,},Yf; € C(AM). (2.1.16)

A momentum mapping, J: M — G* of the action is defined by

(3(2),€) = J()(2), (2.1.17)

10



forall £€ G and z € M, where a ljnear map J : G — C®°(M) is assumed to exist such
that X ) = Eum, or from (2.1.13),

{£, (&)} = &m(f), .Vf € C®(M). (2.1.18)

A momentum map J is called Ad*-equivariantif Jo &, = Ad}_,J, where Ad* is the
co-adjoint action defined in (2.1.15).

It is well-known thét, if the Hamiltonian H is G-invariant, the momentum map
provides a first integral for the system. This result is known as Noether’s theorem (in
Hamiltonian version) which is stated below.

Theorem 2.1.2: If the Lie groﬁp, G, acting canonically on the Poisson manifold
M admits a momentum mapping J : M — G* and H € C®(M) is G-invariant, i.e.,
Ho®,=H or {m(H) =0 forall £ € G, then J is a constant of the motion for H, i.e.,
Jo ¢, =T, where ¢; is the flow of Xp. ]

Next, we introduce the general framework of Poisson reduction. Let a Lie group G
acts on Poisson manifold (M, {, }ar) freely and effectively. Let = : M — M/G be the
canonical projection. Here we assume the quotient space M/G is a smooth manifold.

(M, {, }a) is Poisson reducibleif M/G has a Poisson structure {, }ar/¢ which satisfies

{fomhorm}y =1f,R}mycom, (2.1.19)

for f,h € C*(M/G). If the Hamiltonian H on M is G-invariant, the reduced
Hamiltonian A on M/G is defined by

Hor=H. (2.1.20)

In addition, the Poisson reduced Hamiltonian vector field, X is given by
Xg(H)=A{f,BYmia, VFfeC>(M/G). (2.1.21)

Remark 2.1.3: Another point of view of reduction in geometric mechanics is the
symplectic reduction. For the detail of its framework, cf. [1,28], and for an application,

cf. ’[43]. [ |

11



2.1.4 Simple Mechanical Systems with Symmetry
A simple mechanical system with symmetry is a 4-tuple (@, K,V,G), where,

(i) @ is a smooth manifold, the configuration space of the system;

(ii) K is Riemannian metric on @, whose value on T,Q x T,Q, for each ¢ € @, is
written as K(q)(vg,wq), Yvg, wq € TgQ . The kinetic energy of the system is then
written as 1 K(q)(vq, vq);

(iii) V is a function on @, the potential energy;

(iv) G is a connected Lie group with an action @ : G X @ — @ which leaves both the
Riemannian metric and the potential energy invariant, i.e., for each ¢ in ¢ and g¢
in G,

[}

K(@y())Tq®q - 09, Tg®yq - wq) = K(q)(vg, wg)s  Yvg,wq € TyQ (2.1.22)

and V(,()) = V(q).
For a given simple mechanical system with symmetry (Q, K,V,G), the associated

Lagrangian is defined by
1
L:TQ—R: vy L(vy) = 51& (¢)(vg,vq) — V 0 T(vg), (2.1.23)

where 7:TQ — @ is the canonical tangent projection. The Legendre transform FL of

L is given here by the vector bundle isomorphism
K":TQ - T*Q (2.1.24)

satisfying K®(vg) - wq = K(q)(vg,wy),Yvg, wy € T,Q. The Hamiltonian H : T*Q — R

is defined to be
H(a,) = %K(q)((ﬁ"’)"l(aq), (K" Hag)) + Vot (ay), (2.1.25)

where 7* : T*Q — @Q is the canonical cotangent projection. The standard momentum
map can be defined either by J : T*Q — G* for the lifted action @7  given in (2.1.3)
such that, for each { € G and o, € T;Q,

(J(QQ)NQ = (aq’fQ(Q»’ (2.1.26)
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or by J¥ : TQ — G* for the lifted action ®7 given in (2.1.4) such that, for each £ € G
and vy € To0Q,

(34(vg), €) = K(9)(vg,€0(q))- (2.1.27)

One can show that both momentum maps are Ad*-equivariant. (In the above equations
and later, we use (-,-) to denote the natural pairing of the elements in a vector space
and its dual. We sometimes also use “-” to indicate this pairing.)

Remark 2.1.4: Addition of linear in velocity term to the Lagrangian of a simple
mechanical system with symmétry gives rise to gyroscopic systems with symmetry. For

a careful study of such systems, see [49]. . ]

2.2 Lagrangian Mechanics with Constraints

In this section we present Lagrange-d’Alembert principle for Lagrangian systems
with constraints in invariant form. We first recall some important definitions and facts.
The proofs for most of those facts can be found in {46,47] and will be omitted here.
Although our treatment follows these references, one should notice the differences of
certain sign conventions. In [50] the intrinsic Lagrangian viewpoint is exploited in the
study of gyroscopic stabilization.

Let @ be a smooth, n-dimensional manifold and T'Q) the tangent bundle of @
with the canonical projection 7 : TQ — Q. Let TT(Q be the second tangent bundle
of @ and Tr : TTQ — T() be the tangent map of 7. In local coordinates, one has
7 :(g,v) — ¢ at each point (g,v) in TQ and

Tr(g)  TiguTQ — ToQ
(2.2.1)
(u, w) = (g,u),
where u,w € T,Q).

Let Z(T'Q) be the set of vector fields on T'Q. A vector field, X € £(TQ), is

special if Tw o X is identity. In local coordinates, at each point (¢,v) € TQ,

X(q,v) = (v,w), (2.2.2)

for some w € T,Q . It is clear that a special vector field defines a differential equation of

second order.
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Let T(‘;’U)TQ be a subspace of T(4,.,)TQ such that each vector in T(‘;,U)TQ is
tangent to the fiber of TQ. In local coordinates, every vector in T(‘;,U)TQ has the form
of (0, w) for some w € T,Q. This subspace is referred to as vertical tangent subspace. It

follows that one can identify T,Q and T(‘;,U)TQ by isomorphism through the mapping

V)  Te@ = T(q)TQ (223)
w— (0, w). o

A vector field XV € Z(TQ) is vertical if, at each point (¢,v) in TQ, XV(q,v) €
T(‘;,U)TQ. A vector field XP" € Z(TQ) is principal if it is vertical and, at each point
(g,v) in TQ, XP"(q,v) = Y(q,0) * ¥, OF explicitly, X?7(q,v) = (0,v). Thus, there is a
unique such vector field.

We next consider the corresponding geometric objects and maps on the dual spaces.
Let T*Q and T*TQ be the cotangent bundle of @ and TQ, respectively. Let = (TQ)
be the totality of one-forms on TQ. A 1-form w € w!(T'Q) is horizontal if it annihilates
vertical vector fields on T'Q. In local coordinates, (a,f3) € T(‘;’U)TQ for a,8 € T;Q is
horizontal if and only if 8 = 0. Let (Tw){q’u) 1 Ty Q@ — T, ) TQ be the linear dual of
the map T'(q,,) given in (2.2.1). If @ € T;Q, one can show that

(Tr)(gum(a) = (a,0), (2.2.4)

which is horizontal. Indeed, if (u,w) € T(4.,)TQ,

(T){g (@), (w,w)) = {0 (T7)(g,0)(w, w)) = (@, w) = (@, 0), (1w, w)).

Moreover, let Vg T(*q’v)TQ — T;Q be the dual of the map 7(q,v) given in (2.2.3).

One can show that
Vg0 8) = B, (2.2.5)

where a,8 € T;Q . Indeed, (7("‘q’u)(a,ﬂ),u) = ((o, 8) Y(g,0y1) = {(@, B8),(0,u)) = (B, u).
Define a bundle map 7: T*TQ — T*TQ by

r 2 (Tr)" ™. (2.2.6)
From (2.2.4) and (2.2.5) one shows that, for (a,8) € T(*;’U)TQ ,

T(‘va)(a’ ﬂ) = (ﬁ’o)v (226)/
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which is horizontal. (Indeed, 7(4,.)(e, 8) = (T7)"(, (@, 8) = (T7)"8 = (5,0).)
Remark 2.2.1: It should be kept in mind that the horizontal/vertical operations
defined in this section are based on the structure of the second tangent bundle of a
manifold. They are different from the horizontal/vertical operations on the principal
fiber bundle, which will be introduced in Chapter IV. ]
We are now ready to define some geometric objects to present Lagrange-d’Alembert
principle. Let the smooth manifold @ be the configuration space of a mechanical system

and let a smooth function L on TQ) be the Lagrangian. Define a horizontal 1-form by
wr £ rodL, (2.2.7)

where dL : TQ — T*TQ is exterior derivative of L. In local coordinates, dL(gq,v) =
(D1L(q,v), D2L(q,v)), where D;L(q,v) is the Fréchét derivative of L relative to i-th

argument of L. Then,
wr(g,v) = (D2L(g,v),0). (2.2.7)
Define a 2-form, , by
QL 2 - dwp, (2.2.8)

where dwy is the exterior derivative of wy. From (2.2.7) it is easy to obtain the

expression for 1 in local coordinates, that is,
Qr(g, v)((w1, w1), (v, w2)) = (D1D2L(gq,v) - u2) - w1 + (D2 D2 L(g,v) - w2) - ug

—(D1D3L(g,v) - u1) - ug — (D2 D2 L{gq,v) - wy) - ug,

(2.2.8)
where (ui,w;) € T(q,,)T@Q,% = 1,2. Define the energy function Hy on TQ by
A or
Hp =dL(XP") - L, (2.2.9)
which, in local coordinates, can be written as
Hy(g,v) = D2L(g,v)- v ~ L(g,v). (2.2.9)'

Finally, define Lagrangian force on a special vector field X, denoted as Fr(X), by
FL(X) £ Qu(X,) - dHL. (2.2.10)
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One can show that FL(X) € w!(TQ) is horizontal and, from (2.2.8) and (2.2.9Y, its

expression in local coordinates is, for X(g¢,v) = (v, w),
Fr(X)(g,v)(u1,u2) = (=D1DyL(g,v) - v — D2 Dy L(q,v) - w + D1L(g,v))- uy, (2.2.10)

for any (u1,us) € T(4,,)TQ .

Using the above notions, the Lagrange-d’Alembert principle for Lagrangian system
without constraints is given as follows.

Lagrange-d’Alembert Principle (without Constraints) 2.2.2:

On the special vector field which determines the real trajectory of motion, the sum
of the Lagrangian force and exterior force vanishes on any vector field on the tangent
bundle of configuration space. |

More explicitly, this principle says that the special vector field X whose integral

curves are the trajectories of motion in T'¢) satisfies
(FL(X) +we, Z) =0, (2.2.11)

for any vector field Z € £(T'Q), where w, is a horizontal one-form on 7@ denoting the
exterior force. Following (2.2.10), the local expression of (2.2.11) can be given as, at

each point (gq,v) € TQ with Z(q,v) = (u,w) and we(g,v) = (ae,0),
(=D1D2L(q,v)-v— DyDyL(q,v) - w+ Dy1L(q,v)+ a.)-u=0
or, by letting v = ¢ and w = 0,
d
(EDgL(q,v) - D1L(q,v)) u = a - u. (2.2.12)

For finite dimensional systems, (2.2.12) gives the classical Euler-Lagrange equation, (in
vector form)
ddL 0JL

T (2.2.13)

We next introduce an important mapping and two lemmas which will be used later.
If the Lagrangian L is regular, one shows that €17 is nondegenerate. This gives rise to

a well defined one-to-one mapping, Il : @ (TQ) — £(TQ), determined by

Qr(Ip(w),Y)=w(), (2.2.14)
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for any one-form w and any vector field ¥ on TQ. The following lemma gives an
important property of this mapping [47]. -

Lemma 2.2.3: Let L be regular. If w is horizontal one-form on T'Q and w # 0, then
Ip(w) # 0 and ML (w) is a vertical vector field on TQ. |

Define the Lagrangian vector field, Xy, , by
N ,
XHL = HL(dHL), (2.2.15)

where Hp is the energy function given in (2.2.9). The following useful lemma is also
shown in [47].
Lemma 2.2.4: Xp, is a special vector field on 7Q. ]
Before we proceed to the discussion of constrained systems, we note:
Remark 2.2.5: One can show that the geometric objects 0, Hr, and Xp, here are
exactly the same as those in the Section 2.2.1. ]
Remark 2.2.6: It is very important to realize that (2.2.11) means that the work
done by the sum of Lagrangian force and exterior force on Z is zero. This work is, in
fact, virtual work and Z is virtual displacement (on T'Q)) in the literature of classical
mechanics. Therefore (2.2.11) is nothing but the principle of virtual work. It is also
important to note that \.Nhen the motion of the system is under certain constraints
(holonomic or nonholonomic), this principle is also true provided that the vector field
Z satisfies further conditions relating to the constraints. This is what we will consider
next. |
Before defining constraints, we first give our definitions of a distribution and its
annihilator.
Definition 2.2.7: Let M be a smooth manifold and TM be its tangent bundle with
projection pr: TM — M. Let M' C M be a smooth submanifold of M. A distribution
D of TM on M' is a subbundle of TM over M’,ie., D C pr~1(M') with projection
pr’ = pr|p. The annihilator of D, a codistribution on M’ denoted as D+, is a subbundle
of T*M over M' such that, for any m€ M', w € DL and v € D,,, (w,v) =0. B
Remark 2.2.8: We make two assumptions:

(1) In the following, for simplicity, we assume M’ = M. This assumption will be relaxed
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later (after Remark 2.2.18) when we consider a special case in which M’ is a leaf of a
foliation of M. In this particular case, D = TM' and distribution and co-distribution
given below can be naturally restricted to M'.
(2) We assume that all distributions and co-distributions are smooth (i.e., differentially
depend on the points of M) and nonsingular (i.e., have fixed dimension). By this
assumption, it is clear that if dim(M)=n and dim(D)=d, dim(D*)=2n-d. n
We now introduce Lagrangian systems with constraint on an n-dimensional
configuration space Q. Classically, a constraint is defined by a subspace, D', of TQ,
which is locally given by m independent functions, say ¢*(¢q,v), k=1,---,m, on TQ,
i.e.,

D'={(g,v) € TQ | ¢*(g,0) =0,k =1,---,m} (2.2.16)

If we further assume that ¢*’s are linear in v, D' is a distribution of TQ. Then a
Lagrangian system compatible with the constraint is one such that at any point ¢(t) on
the trajectory of the motion {¢(t),t € [0,T],T > 0}, (q(t),v(t)) = (q(t), ¢(t)) € D.
However, as we have seen, the geometric treatment of Lagrangian mechanics is to
construct the dynamics of the system on the second tangent bundle of Q. Therefore,
1n general, constraint should be defined through a submanifold, or particularly, a
distribution on T'Q. (Caution: This is still a special case. See Remark 2.2.8 (1)).
A Lagrangian system compatible with constraint will mean that the dynamics (or the
special vector field) belongs to this distribution. An equivalent way to define the
constraint is to consider it as a codistribution on T'Q) such that it annihilates the special
vector fields on T'Q) given by the motion of the system. This is what we will do.
Definition 2.2.9: A Constraint on the tangent space T@ is a codistribution © on
T@. A Lagrangian system compatible with constraint © is a special vector field X on
TQ, which is annihilated by © at every point on TQ, i.e., ©(X) = 0. |

In local coordinates, at each point (g,v) in TQ,

O(q,v) = span{b*(q,v) = (5,5, k=1,---,m}, (2.2.17)

where o*, 8% € T;Q, k = 1,---,m, and {#*} are linearly independent, which can,

therefore, be viewed as a basis for @.
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Using the bundle mapping 7 defined in (2.2.6) we can define the constraint

reactions on TT (@ and other related notions as follows.
Definition 2.2.10: The constraint reaction is the horizontal codistribution, 7. An
element of 70O is referred to as a constraint reaction force. A constraint is admissible
if dim(70) = dim(©). A constraint is called ideal if it annihilates the principal vector
field XP7. |

From (2.2.17) and (2.2.6), in local coordinates, a constraint is admissible if
{B*%,k =1,---,m} are linearly independent.

The following two lemmas are essential and easy to prove [46].

Lemma 2.2.11: If a constraint is admissible, then there exists a special vector field
compatible with this constraint. |
Lemma 2.2.12: If a constraint is ideal, constraint reaction vanishes on loops lifted on
TQ from Q. n
Remark 2.2.13: The conditions of these two lemmas insure the existence of a special
vector field which satisfies the constraint and the workless nature of constraint reaction
force. Later on we will always assume these conditions are satisfied. |

We are now ready to state the Lagrange-d’Alembert principle with constraints.
Lagrange-d’Alembert Principle with Constraints 2.2.14:

On the special vector field which satisfies the constraint and determines the real
trajectory of motion, the sum of the Lagrangian force and exterior force vanishes on
the vector fields annihilated by the constraint reaction on the tangent bundle to the
configuration space. |

Using the notations introduced earlier in this section, this principle says that the

special vector field X which gives the dynamics of the system with constraint satisfies,

(Fo(X)4+w.,Z)=0 (2.2.18a)
for an exterior force w, and
O(X)=0 (2.2.18b)
for any vector field Z such that
(rO)(Z) = 0. (2.2.18¢)
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Remark 2.2.15: As we have mentioned in Remark 2.2.6, vector field Z plays the
role of virtual displacement. Then (2.2.18) says that work done by Lagrangian force and
exterior force on virtual displacements is zero provided that the virtual displacements
are “perpendicular” to the the constraint reaction. This is the essence of Lagrange-
d’Alembert principle. We sometimes also call the value of Z a test vector. |

Following the same procedure used to obtain (2.2.12) and using the local expression

(2.2.17) for O, (2.2.18) can be represented locally as

d
(aDgL(q,'v) - D1L(g,v))-u=a.-u (2.2.19a)
with constraints
o v+pFo=0, k=1,---,m, (2.2.19b)
for u satisfying
BFu=0 k=1,---,m. (2.2.19¢)

The Lagrange-d’Alembert principle can also be stated in an alternative form by
using the constraint reaction force. From (2.2.18) we see that Z belongs to (70)*
implies that Fr(X)+ w. belongs to 70, i.e., there is an element, a constraint reaction
force, w in 7O such that

FL(X)+we+w=0. (2.2.20a)

Then the Lagrange-d’Alembert principle says that the special vector field X determines

the real trajectory of motion for the constrained system if it satisfies (2.2.20a) and
o(X)=0. (2.2.20b)

The local expression for (2.2.20) can be obtained as follows. Let {8* = (a*, %),k =

1,+-+,m} be the basis for ©. Then

w= " A(B",0),
k=1

where Ay are functions (multipliers) on 7QQ. Then following the same notation as for
(2.2.12), the equations of motion for constrained system are

d

p Dy L(q,v) - D1L(q,v) = ae + Z A B* (2.2.21a)

k=1
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and
af vt pFo=0, k=1,---,m. (2.2.21b)

Remark 2.2.16: In classical mechanics, both (2.2.18) and (2.2.20) (or locally, (2.2.19)
and (2.2.21)) are used as dynamical equations for systems with constraints. In many
physical problems, (2.2.20) is more often applied because it determines the constraint
reaction force. On the other hand (2.2.18) is more important for many analytical
problems. As we shell see in a later chapter where symmetry will be involved, the
reduced dynamics can be derived from (2.2.18). |
We next consider the existence and uniqueness of a vector field on T'Q which
satisfies Lagrange-d’Alembert principle. For an unconstrained Lagrangian system, it is
clear that given exterior force, there exits a unique special vector field satisfying (2.2.11)
if the Lagrangian is regular, i.e., F2L is nondegenerate. Here F2L : TQ — L(TQ,T*Q)
is the second order fiber derivative of the Lagrangian L, known as the Hessian of
L. Locally, F2L(q,v) = DaD;L(q,v). For Lagrangian systems with constraint, the
following proposition gives the answer. We will prove it in detail following the idea
provided in [46].
Proposition 2.2.17: If the Lagrangian L is regular and the Hessian F2L is positive
definite, then for every admissible constraint © there exists a unique special vector field
X compatible with the constraint, ©(X) = 0, and satisfying the Lagrange-d’Alembert
principle with constraint.
Proof: Without loss of generality, we assume there is no exterior force, i.e., a, = 0 (see
also Remark 2.2.18(1) below). By the definition of Lagrangian force (2.2.10), we consider

the existence and uniqueness of a special vector field X for equation
Qu(X,)-dHp 4w =10,

where {17, and Hj are defined respectively in (2.2.8) and (2.2.9). We prove the assertion

by using local coordinates.
Since the Lagrangian L is regular, ; is nondegenerate [1]. Then there exists a

nondegenerate one-to-one mapping Iy, : w'(TQ) — F(T'Q) such that

QL(HL(dHL - w),Y) = (dHL - w)(Y),
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forall Y € Z(TQ). It is clear that I (dH —w) is special vector field since II(dH ) is
special (by Lemma 2.2.4) and Il (w) is vertical (by Lemma 2.2.3). To bring Il (dH-w)

into agreement with the constraint, we require
Ol (dHL —w)) =0
or
0(XL) = 0(IILw),

where X1 = Il (dHL). If we can prove that there exists a unique w € 70 satisfying
the above equation, the assertion is proved.
Since w is a constraint reaction force, there exists a 1-form § € © such that

w = 78. Thus we have to solve for § in
O(XL) = 0((IlL o 7)9). (2.2.22)
Let {6*}™ , be a basis for @. Then (2.2.22) is equivalent to
(6%, X)) = (65,(TIpoT)8) k=1,---,m. (2.2.23)

Let 6 = Y1, A6, where {\(}7%, are functions on 7Q. Then (2.2.23) is equivalent

to

(6%, X1) =Y X(6%,(TlLor)f), k=1,---,m. (2.2.24)
i=1

Now we only need to show that there exists a unique solution {Ax}7., for the above
equation, or equivalently, m X m matrix ((6%,(II o 7)8%)) is invertible. By the

construction of operator I (cf. (2.2.14)),
Qr((IL 0 7)(8),Y) = (r6)(Y), VY € Z(TQ). (2.2.25)

In local coordinates, at each point (g,v) € TQ,let 8(q,v) = (, 8) and Y(g,v) = (Y7, Y>)
where @, € T;Q and Y; € T,Q,¢ = 1,2. We then have 76(q,v) = (5,0) and

(Il o 7)(0)(q, v) = (0, w), (2.2.26)

for some w € T,Q (cf. Lemma 2.2.3). By the local expression of 2 (2.2.8), Equation
(2.2.26) becomes

(D2D2L(q,v)) - w-Yy = ~F-Y7.
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This implies w should be, since L is regular and Y; is arbitrary,
w = —(D2D2L(q,v))" 8.
Now (2.2.10) has the local expression
(Il o 7)(a, B) = (0, ~(D, D, L)™' B). (2.2.27)
Let 6%(q,v) = (¥, B%), where o* and 8* € T;Q. Then from (2.2.27) we have
(6%, (T o 7)6°) = —(B*, (D2 D2 L(g,v)) T F°),

for ¢4,k =1,---,m. Now replacing the components of right-hand-side of (2.2.24) by the
right-hand-side of the above equation, we get
(6%, X1) = =Y A(B*,(D2D:L(g,v))'B),  k=1,---,m. (2.2.28)
. i=1
Note that, since © is admissible, the independence of {#*} implies the independence
of {8*}. Also, that DyD,L(q,v) is positive definite implies that (DyDsL(g,v))"! is

positive definite. Then it is easy to prove that the m x m Gramian matrix

({(8*,(D2 D2 L(g,v)) "' 8%)) (2.2.29)

is invertible. This completes the proof of the theorem. |
Remark 2.2.18:
(1) In (3], the invertibility of matrix (2.2.29) is considered as the condition for the
existence and uniqueness of a solution for equation (2.2.21). In classical mechanics,
L = K-V, where K is the quadratic form of kinetic energy (or Riemannian metric
on @) and Vis potential energy. Therefore the conditions of this Proposition are
naturally satisfied.

(2) If the exterior force or control w, # 0, (2.2.24) can be written as
(0%, ML(dHL — we)) = D A(0F, (Tl o r)6),  k=1,---,m,
i=1

and the solvability conditions is as before. To keep the system moving under the

constraints, one should make dH; — w, # 0. B
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We now study a special type of constraint, which we briefly introduced earlier
after Remark 2.2.8. Consider a foliation of T'Q) given, locally, by a set of smooth and
independent functions

{¢F:TQ - R, k=1,---,m}. (2.2.30)
We would like to study the motion of a Lagrangian system on a leaf, say zero level leaf,

of this foliation,

S ={(g,v) € TQ|¢*(q,v) = 0,k =1,---,m}. (2.2.31)
Then the constraint © is, locally,
O(q,v) = span{8* = (D16%(q,v), D2¢*(q,v)), k= 1,-+-,m}. (2.2.32)

Remark 2.2.19: One should note that this constraint, or co-distribution, is defined
on S, instead of all of TQ). As we have mentioned in Remark 2.2.8(1), the geometric
objects (distributions and vector fields) in the above Deﬁnitions, Lagrange-d’Alembert
principle and the Proposition can be modified (restricted) to § with impugnity. [

By Lagrange-d’Alembert principle and (2.2.32), the restricted dynamic motion on

&, satisfies the following equations

d
(E—t-D«_;L(q,v) - D1L(g,v)) u=0c-u (2.2.33a)
for u satisfying
Dy¢*(g,v)-u=0, k=1,---,m (2.2.33b)
and (g, v) satisfying
o (gv)=0, k=1,---,m; (2.2.33¢)
or, using multipliers,
d m
—-DaL(g,v) = D1L(q,v) = ac + > AkD2g*(q,v) (2.2.34a)
k=1
and
¢k(Q7 'U) = 0? k = 17 e, 1N, (2.2.341:))
A further special case of the above constraint is that the ¢*’s are linear functions
of v, i.e.,

d’k(q, v) = (wk(Q)’ v)
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for some w* € w!(Q') for k = 1,---,m and a submanifold Q' of Q. With this
construction, the constraints can also be considered as a co-distribution on @', denoted
as

B={wfk=1,.--,m}.

In this case, the equations of motion are (2.2.33) or (2.2.34) with D.¢* = w* k =
1,---,m.

Definition 2.2.20: If the co-distribution B is not integrable, it is called a nonholonomic
constraint on Q', otherwise it is a holonomic constraint on Q’. |
Remark 2.2.21: Equivalently, one can use the distribution B+ to define nonholonomic
and holonomic constraints on Q’. ‘ ]
Remark 2.2.22: In holonomic problems, constraints are usually given by a set of

functions on @, say

{ff:Q-Rk=1,---,m}, (2.2.35)

which gives a foliation of the configuration space @. Then, the submanifold @' in
Definition 2.2.20 is a leaf of this foliation. From Lagrange-d’Alembert principle, the

motion of the system satisfies the following equations:

d - .
= D2L(g,v) = D1L(q,v) = e + ; kD f*(q) (2:2.362)
and
flo=0, k=1,--\,m. (2.2.36b)

From a mathematical point of view, the holonomic problem is viewed as a simple case
since it can be re-arranged as an unconstrained problem (at least locally). But, as we
will see in next chapter, physical systems (such as four-bar linkages) with holonomic
constraints may possess very interesting properties in their kinematics and dynamics. g
Remark 2.2.23: It is known that for the systems with holonomic constrainte, the
Lagrange-d’Alembert’s principle is equivalent to the (Hamilton’s) principle of least action,
which determines a curve, {g(t),t € [0,1]},in @ to satisfying two fixed end points and

constraints, and minimizes the functional

1
/0 L(g(t), §(0))dt,
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where L is the Lagrangian. It is also known that, in general, if the constraints are
nonholonomic, the two principles are not equivalent. In particular, if the leaf constraints
are given by nonintegrable functions (2.2.30), the curve ¢(-) € Q determined by the
principle of least action with constraints fulfills the equation

d

dtD2L(q’ ’U) DIL(q, v) - Z ’\k( dt D2¢k(Q7 ’U) - D1¢k(q’ v)) + kzl AkDZ(bk(qv v)

(2.2.37a)

or, equivalently,

d
—D2£(q, v)— D1L(q,v) =0, (2.2.37b)

where £(g,v) = L(g,v) — Y peq Md*(g,v). In [3] the systems determined by the
equations (2.2.37) are said to obey vakonomic mechanics (mechanics of variational
axiomatic kind). It has been shown that for mechanical systems with nonholonomic
constraints, only the Lagrange-d’Alembert principle provides physical motion (cf. [39,
40,48]). If @ is Riemannian manifold with L the metric, the above assertions say that for
holonomic mechanics, the real motions of the system are geodesics, but for nonholonomic
mechanics, it is not. In Chapter IV we will study a special nonholonomic variational
problem with a meaningful choice of Riemannian metric. |
Example 2.2.24: Before ending this chapter, we consider a popular example in the
literature of nonholonomic dynamics, that is, rolling (without sliding) a homogeneous
sphere on an absoiutely rough and horizontal plane. We will solve the constrained
dynamic equation involving test vectors.

Let m be the mass of the sphere and mk? the inertia of the sphere about any axis
passing through the center, where k is called radius of gyration. Let a be the radius
of the sphere. Let 0- XY Z be a coordinate system in inertial space with Z-axis being
perpendicular to the plane. Since it is obvious that there is no motion along Z direction,
the configuration space of the system is ®2 x SO(3). The Lagrangian of the system can
be expressed as

where (z,y) gives the location of the center of the sphere on the plane and (wg,wy,w:)

is the angular velocity of the sphere expressed in coordinate system 0-XYZ. The
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nonholonomic constraint of rolling without sliding can be expressed as
awy, =9 and  awy = —i. (2.2.39)

We also assume that the sphere rotates on the plane under the applied force (Fg, Fy)
acting at the center of the sphere. With the above setting, using (2.2.33), we get the

following dynamic equations with constraints:
m(Euy + Jug) + mk? (Wzp1 + wyps + @z u3) = Fpuy + Fyup (2.2.40a)
for (uy,us, 1, K2, 43) being test vector satisfying
apy =uy  and  aps = -y (2.2.40Db)
and (2, ¥, wq,wy,w;) satisfying linear constraints
aw, =y and awy = —i. (2.2.40¢)

After a simple calculation to eliminate py and po, one can get

a® + k2

a?

m (Zuy + Juz) + mk2o,us = Fpuy + Fyug, (2.2.41)

where uy,us and ps can be chosen arbitrarily. Then from (2.2.41) and constraints

(2.2.40c), one gets

. a? Fy
x_a2+k2m
. a® Fy
V= m
e F, (2.2.42)
T A+ k2 m
. a F,;
S
\ w, = 0.

If F, Fy is known the above equation can be easily solved.

There are two important features in the above equations. First, the motion of the
center of the sphere does not depend on the spin of the sphere about vertical direction of
the plane, i.e., the motion of the center looks like that of a particle with modified mass.

Secondly, angular velocity w, is a constant. An interesting question one may ask is that
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if we consider conserved w, as an a prior:i constraint, by adding it to the constraints
in (2.2.39) and using the above approach, can we get the same dynamic equation? The

answer is yes. In fact, equations (2.2.40) now have the following form:
m(Fuy + Juz) + mk? (Oppr + ypiz + Wop3) = Fouy + Fyup (2.2.43a)
for (uy,us, p1, 42, 43) being test vector satisfying
apy = uy and aps = —u; and pz =0 (2.2.43b)
and (2, y,ws,wy,w;) satisfying constraints
aw; =9 and awy, =-% and w;=c, (2.2.43c)

which is affine. After a straightforward calculation from (2.2.43), one gets

a2+k2

m

a? (.’L"U.l + yUQ) = qul + Fy'LL2, (2244)

where u;,u; can be chosen arbitrarily. Using (2.2.44) and (2.2.43c), the final result is
the same (2.2.42).

It is very important to observe that, after using w, = ¢ as one of the constraints,
we get a lower dimensional dynamic equation (2.2.44) which is independent of rotational
variables. The theory behind this phenomenon and the systematic approach to derive

such reduced equations are precisely what we will explore in Chapter V. |
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CHAPTER III

GEOMETRY AND DYNAMICS OF
FLOATING FOUR-BAR LINKAGES

Inspired by many mechanical problems in space engineering, significant progress
has been made to understand dynamics of coupled mechanical systems, which consist
of serial links or open chains, by applying geometric methods, symmetry principles and
reduction, cf. [21] and references therein. On the other hand, problems in aerospace
engineering also suggest that multibody systems with kinematic loops are of practical
importance. In this chapter, we study the kinematics and dynamics of the simplest
mechanical system with a kinematic loop, which is represented as (kinematic) holonomic
constraint — the planar, floating four-bar linkage. By floating we mean that no link is
fixed in space. It is simplest in that it has the fewest degrees of freedom among all kinds
of mechanisms with closed loops.

There are at least two important aspects of our study of such systems. First, as
we shall see in this chapter, the presence of loop closure constraints implies that the
knowledge of the Hamiltonian structure and phase portraits for open chain multibody
systems cannot be applied directly to systems with closed loops. A careful study of

a simple coupled system with closed loop is necessary. Secondly, we note that in the
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theory of machines, four-bar linkage (with one link, the frame, fixed) are often used to
synthesize more complex mechanisms [19]. Moreover, it can generate the wide variety of
motions represented by coupler curves [18]. For floating four-bar linkages, one expects
similar properties to hold.

The outline of this chapter is as follows. After stating the basic notations for
this chapter in Section 3.1, we give a geometric description of the configuration space
in Section 3.2. In Section 3.3, we give an explicit expression for the kinetic energy of
the system. In Section 3.4, we explore symmetry properties, Hamiltonian structure and
reduction of four-bar linkage dynamics. In Section 3.5 a theorem of Smale is used to
compute relative equilibria for the dynamics of a four-bar linkage. Then, using techniques
from singularity theory, we study the local bifurcations of relative equilibria for linkages |

which admit symmetric shapes.

3.1 Notations and Geometric Constraints

The structure of a closed floating four-bar linkage is represented in Figure 3.1.1.
What we mean by bar in this chapter is a planar rigid body, on which the center of mass
and pin joints are located arbitrarily. The bars are labeled sequentially from 0 to 3. On
each bar, a body-fixed frame is attached such that its origin is at the center of mass of the
bar and the z-axis is parallel to the line connecting two joints on the bar. In particular,
we choose the positive direction of of z-axis of ¢-th bar towards the (i 4+ 1)-th bar, for

1=0,1,2,3 (mod 4). We define the following quantities.

d;; the vector from the center of mass of ¢-th bar to the joint with 7-th bar in

body-fixed frame;

T; the position vector of the center of mass of i-th bar relative to an inertial
observer;

r{ the vector from the system center of mass to the center of mass of 7-th bar;

the position of the éystem center of mass relative to the reference point of

the inertial observer;
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inertial
observer

Figure 3.1.1 The general structure of four-bar linkage

0; the orientation angle of ¢-th bar relative to the inertial frame;
0:; the relative angle between ¢-th bar and j-th bar, ie., 6;; = §; — 0;;
l; the length of i-th bar, which is defined as the distance between the joints

on i-th bar, i.e., l; = ||di i1 — diial];

my, I; the mass and the moment of inertia of 7-th bar about its center of mass;
m the total mass of the system, i.e.,
3
m = Z m;.
1z=0
Any pair of adjacent bodies is connected by the following relation, the hinge
constraint,
I';':+1 = I'(i: + R(ei)di,i+l - R(9i+1)di+l,i 1= 0, 1,2,3 (mod 4), (311)
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where

o= (5o i)

the rotation matrix. By eliminating r{ in (3.1.1) we find the loop constraint or closure

constraint,

> R(9:)(diig1 — dijio1) =0, (3.1.2)

=0

where the convention of modulo 4 addition for the subscripts is adopted.

3.2 The Configuration Space
In this section we investigate the conditions under which the loop constraint (3.1.2)
describes a submanifold of the configuration manifold of an open four-bar chain.

For a planar floating four-bar open chain, the configuration space is
M=Rx5"x85"x 8" xS

Here M is a 6-dimensional manifold with local coordinates m = (=, %o, 6o, 61, 02, 83).
This corresponds to keeping track of a material point (say center of mass on one of the
bodies) and the four absolute orientations. See [34,43,44] for the Hamiltonian mechanics
of such open chains.

For a closed four-bar mechanism considered in this chapter, the configuration space

denoted by @) is a subset of M determined by (3.1.2), i.e.,
Q ={me M|F(m)= 0}

for

3
F(m) =Y R(0:)(dir1 — dijim1)- (3.2.1)

=0
For () to be a submanifold of M, we have the following condition.

Theorem 3.2.1: If

lotli+l+1; #0,

Q) is a submanifold of M.
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Proof: Note that F : M — 2. From [17] we know that if O is a regular value of F,
i.e., F/0m has full rank for all m € M satisfying F(m) = 0, then Q is a submanifold
of M.

From (3.2.1) we have

QE_ 0 0 —losin(ﬁo) —llsin(f)l) ——lgsin(02) —I3Sin(93)
Om 0 0 Igcos(8p)  licos(B1)  lycos(82)  lzcos(83) /)~

It is easy to check that all the nontrivial determinants of 2 X 2 submatrices are given by

the following functions,

g1(m) = lgly sin(6; — bp)
g2(m) = lglasin(8; — 6p)
g3(m) = lolzsin(63 — bo) (3.2.2)
ga(m) = lyl3sin(6y — 0y)
gs(m) = l1l3sin(03 — 01)
ge(m) = lyl3sin(b3 — 6;).

Therefore, if for each m € M satisfying F(m) = 0, there exists an ¢ such that
g:(m) # 0, @ is a submanifold of M. It is obvious that the above condition depends on
the relative angles and, consequently, the lengths of the bars. To arrive at the condition
in the statement of the theorem, we proceed from the converse.

If g;(m) =0 for all i, from (3.2.2), we have

0y -0, =00rm (3.2.3a)
and

O3~ =0o0rm (3.2.3b)
and

| 65 — 6o =0 or 7. (3.2.3¢)
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Premultiplying (3.1.2) by R(—6p), we get following equivalent closure constraint

equations

lo+llcos(91 - 90) + 12(603(03 - 92)608(03 - 00)

+ sin(63 - 02)sin(93 - 90)) + 13608(03 - 92) =0 (3243.)

llsin(91—90) + 12(C03(93 - 92)sin(03 - 90)

— sin(f3 — 03)cos(03 — 6p)) + lzsin(f3 — 65) = 0. (3.2.4b)
So, to make 6;’s satisfy both (3.2.3) and (3.2.4), the lengths of the bars should satisfy
b+ (=D + (=% + (-DFl3 =0 (3.2.5)

for some ky, ks, k3 € {0,1}. By contradiction, if, for all ki, k2, k3 € {0,1}, (3.2.5) does
not hold, then there is an ¢ such that g;(m) # 0, which means that @ is a submanifold
of M. |

Table 3.2.1 summarizes the cases which violate the conditions on lengths of the
bars in Theorem 3.2.1. It is easy to observe that case (i) can never happen since I; are
assumed to be positive. In addition, cases (iii), (iv), (v) and (vi) are trivial since, in
these cases, none of the relative angles can vary, i.e., the configuration space loses one
degree of freedom and the linkage becomes a rigid structure.

In the following we show that the condition in Theorem 3.2.1 can be simplified by
ignoring the labels on the bars and give a topological description of (). We first recall
some definitions and results in the classical theory of mechanisms [15,36,37]-

For a four-bar linkage in classical mechanics, in which one bar, the frame, is fixed,
the following quantities are defined: |

5 = length of shortest bar,
I = length of longest bar,
P, G = lengths of intermediate bars.

A bar which is free to rotate through 27 with respect to a second bar is said to revolve

relative to the second bar and is referred to as a crank. Any bar which does not revolve
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case | B~ 99 83~ 95 040 link condition structure
i 0 0 0 .lo+l1+lz+l3=0
_ 0 o 1
ii 0 0 T l0+ll-lz-l3-—0 [on 3 > n
3 0 1
2a 3 o 0
\"} T 0 0 lo‘l l+lz+l3=0 fom T D
1 w2 a3
Vi - 0 - lo-ll-lz-l3=0 a - o)
. 3 Q O
vii T T 0 lg-1y-1 #14=0 S "
A 3
éftin C)
viii = on o owm | lglyrly-lg=00 Jor 2
&= )
2

Table 3.2.1 Singular Configurations

is called a rocker. If it is possible for all bars to become simultaneously aligned, such a
state is called a change point and the linkage is said to be a change-point mechanism.
Given four bars, assembling them into a closed loop and labeling them sequentially, the

linkage may have instantaneously one of three kinds of shape. These correspond to
>0
3in(93 - 93) < 0;
= 0.

In the classical theory of mechanisms, they are called lagging form, leading form and

dead point, respectively. The following theorem is due to Grashof [15].

Theorem 3.2.2:

(1) A four-bar mechanism has at least one crank if

F+1<p+q

35



and all three will rock if
5+I>p+4.
(2) A four-bar mechanism is a change-point mechanism if and only if
3+l=p+4. |
Remarks 3.2.3:

(1) If 541 < p+ g, the shortest bar is the revolving bar.

(2) It is easy to check that the cases (ii), (vii) and (viii) in Table 3.2.1 correspond to
5+1 =5+, i.e., they correspond to change-point mechanisms. |
Since the conditions in Grashof’s Theorem 3.2.2 are so important, we give the

following definition.

Definition 3.2.4: We refer to the condition 3+/< p+§ and 3+ > p+ ¢ as Grashof
and non-Grashof condition, respectively. The corresponding linkages are referred to as
Grashof and non-Grashof mechanism or linkage, respectively. |

From Theorem 3.2.1, we immediately have following result.
Corollary 3.2.5: If a four-bar linkage is constructible, ie,l<5+d+7pand
S+HI£5+7,
@ is a submanifold of M. In other words, ¢ is a submanifold of M if either Grashof
or non-Grashof condition holds. ]
To give a topological description of the configuration manifold ¢, we first need the
following result.
Proposition 3.2.6: Let [; = 5. Then 5+1 < p+ ¢ if and only if sin(f; — 6y) # 0 for
all configurations.
Proof: The mechanism can be assembled with 5 adjacent to [ or with 3 opposite .
And, [ can be Iy, I or I3. If 65 — 6, = k=, the whole structure attains a triangular
shape which has the property that the sum of two sides is larger than the third one.
Then it is easy to check that all possible cases will lead to §+ 1 > 5 + ¢. Further, it is
obvious that if 5+ = §+ g, there exist 8, and 83 such that sin(f3 — 62) = 0. And, if

541> 7+ q, by Grashof’s theorem, all bars will rock with respect to each other. This
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means that dead point is reachable. Therefore, if sin(f3 —8;) # 0 for all configurations,
5+I<p+7. N
An equivalent way to state the above assertion is that a four-bar linkage is a Grashof
mechanism if and only if it is constrained to be in either leading form or lagging form.
Moreover, for non-Grashof mechanisms, the linkage can vary continuously from leading
form to lagging forrﬁ.
From Grashof’s theorem and the above proposition we can get a topological

description for Q.
Theorem 3.2.7:

(a) For a Grashof linkage, i.e., 5+ < 5+ §, Q has two components. Each

component is diffeomorphic to ®% x §* x 5*.
(b) For a non-Grashof linkage, i.e., 5+1> p+ 7, Q = R2 x §1 x SL.
Proof: Our proof is based on explicit parameterization of the manifold . Recall that

from (3.2.1) the dimension of @ is four. Again, welet 3=1;.

(a) If 541 < 5+q, we consider the parameters (2, 4o, 60, 81), where (2q,%0) is the
coordinate of any point on 0-th bar in inertial frame. From the definitions of 8, and 6,
and the Grashof Theorem 3.2.2, both 6y and 6, can vary from —7 to 7 independently.
From Proposition 3.2.8, one component of the manifold ¢ corresponds to leading form.

The other corresponds to lagging form.

(b) If 541> p+ q, from Grashof theorem, there exists an angle a, 0 < a < 7,
such that, 019 € [~a+7,a+7]. At the boundaries, the system is at “dead point”. Now,

we consider the independent parameters (zg, yo, 6o, ), where

) TS ST ST > i ;
B { %, if sin(fs2) > 0 (lagging form); (3.2.6)

f19—m—0o Z, if sin(632) < 0 (leading form).

It is easy to check that  and 610 have a one-to-one relation in both leading form and
lagging form. Moreover, § varies from —7 to w. For 6 € (=m,0), the mechanism is
in the leading form; for 6 e [0, 7], the mechanism is in lagging form. So (a:o,yo,Oo,é)

parameterize 12 x S! x §1. | |
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Remarks 3.2.8:

(1) Gibson and Newstead in [13] proved above assertion using the methods of algebraic
geometry.

(2) This theorem says that for a fixed location of the center of mass in RZ%, the
configuration space is the disjoint union of two tori for a Grashof linkage and
a torus for a non-Grashof linkage. For the latter, the torus can be split into two
parts, one corresponding to leading form, the other corresponding to lagging form.
"It can be imagined that, when 5+ I = g+ P, two tori touch each other with a
circular intersection. This can be seen in the following example.

(3) From the above remark, we note that, for both Grashof and non-Grashof linkages,
one may use (g, Yo, 0o, 1) and specified form (leading or lagging) to parameterize
Q locally. For the non-Grashof case, one has to worry about the parameterization
in the neighborhood of the dead point. This problem can be solved by re-labeling

the bars. We will discuss it further in the next section. |

Figure 3.2.1 Reduced configuration spaces, an example
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Example 3.2.9: Here we illustrate the Theorems 3.2.1 and 3.2.7 by a simple example.
First, we fix one bar (position and orientation), say lo and let 63 = 0. This means a
point in R2 x S! has been chosen and the dimension of the configuration is reduced to

one. Now the constraint equation (3.1.2) becomes
lo + 11008(91) + 12605(02) + 13008(03) =0

llsin(al) + lgsin(92) + l3sin(03) = 0.

Eliminating one more angle, say 63, we get
F(61,62) £ (I + Lcos(B1) + lycos(62))? + (Iysin(f1) + lysin(62))2 — 12 = 0. (3.2.7)

The solutions of this equation gives a curve on a torus 72 as the configuration space.
Now we choose Iy = 3, [y = 3, I3 = 4 and let I, vary. Figure 3.2.1 shows the
results. The rectangle with opposite edges identified is the standard way to represent a
torus [17]. We see that when I, = 1.9, 541 < §+ ¢ holds and the solution of (3.2.7) on
T? is a disconnected closed curve; when l; =2, 5+ = §+ ¢ holds and the solution of
(3.2.7) on T? is a “figure 8”; when Iy = 3, 541 > §+ ¢ holds and the solution of (3.2.7)
on T? is a connected closed curve; when Iy =4, 5+ = 7+ § holds and the solution of
(3.2.7) on T? is a “figure 8”, again; when ly = 4.5, 541 > p+ ¢ holds and the solution
of (3.2.7) on T? is a single closed curve, again. If the linkage is allowed to float, we get

the configuration spaces described in Theorem 3.2.7. |

3.3 Kinetic Energy

In this section we derive the kinetic energy, or Lagrangian since we assumed that
no potential energy is involved, for the whole system. The basic idea is to write the
kinetic energy for each individual body first and then use the constraint equations to
eliminate extra variables.

The kinetic energy of the ¢-th bar is

1

1 .
3 I + :Z-miHl‘iH2,
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where w; = 91 The total kinetic energy is
T=—1-iw-2I'+lim-||i'-”2. (3.3.1)
2i=ozl 2i=011 -
To describe the kinetic energy relative to the center of mass, we have following useful

equations,

r; = re+r¢, 1=0,1,2,3 (3.3.2)
zs:mirf = 0. (3.3.3)
i=0
By applying (3.3.2) and (3.3.3), (3.3.1) becomes,
T = 123:&11- +1 im,-nf?u? + Ll 2. (3.3.4)
2 =0 ' 2 i=0 ' 2

Applying (3.1.1) and (3.3.2), we get

[R(O;=1)mi—1diq

¢ _
ri—

S

— R(0:)(mi—1diic1 + (Mmig1 + mig2)diiv1)
+ R(Oix1)(mig1 + mig2)digy1,i — Mmigadigi,iv2)
+ R(Oir2)mitadita,ita]s
for 1 =0,1,2,3 (mod 4). Note that the convention on the subscript can be used because

of the closed-loop condition. Furthermore,

. 1 N
£ = —[mi—1®io1 R(fi-1)dizn,s

— @;R(0:)(mi—1d; =1 + (Mig1 + mig2)diig1)
+ Qip1 R(Oip1)(Mmig1 + migo)digr,i — migadiyyiv2)

+ Qipa R(Oig2)mirediv2 iv1), (3.3.5)

for ¢ =0,1,2,3 (mod 4), where

o = 0 —w
tT [F5H] 0 )

By substituting the formula for #{ into (3.3.4), we get a more compact expression for

the kinetic energy
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1 1
T =35 <&,Mo> +mlil?,  (3.3.6)

where & = (wo,w1,ws,ws)T and M= (M;,j,i,j =0,1,2,3) is a 4 x4 symmetric matrix,

with elements given as follows.

Let
i mg i1 1 i+1
+ mipr1(Migpimioy + mimigg)
+ m,-mH.g(mH_l + m,~+2)] (3.3.73.)
_ mi
il = W(m?_” - Mip1mio) (3.3.7b)
m;m;
ﬁl,iIII = ——Tr-ﬂ;z(mi_*.l + mi_l). (3.3.7C)
Then

Mi=1I+ m{”d“?,i+l + mi—lnd”?,i—l
—2mil < d;ip1,diio > (3.3.8a)
My = —mf < dijig1, R(0ip1,)d g1, >
+ M’ < diig1, R(Oig1,i)digr,iee >
+mi < diict, RBir1,0)digri >
+@m < diiy, R(6igr )dig1i2 > (3.3.8b)
Miiys = —mi’ < diip1, R(0ip2,i)dipa,ig1 >
— it < di g1, R(Gig2,i)div2,io1 >
—mily < dii-1, R(0i42,i)dit2,im1 >
— i < d;i1, R(Biv2,:)div2,iv1 > (3.3.8¢)
for 1 =10,1,2,3 (mod 4).
Remark 3.3.1: Let the four bars be labeled sequentially such that [; = 3. It is clear

that the dependence of T on 8;, i = 0,1,2,3 can be rearranged so that kinetic energy

T depends on 819 and 632. In addition, from (3.1.2) or (3.2.4), 8;, : =0,1,2,3 depend
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on each other by constraint. From [36], we have the following explicit dependence of 6,

and 63 on 6y and 6;:

0y = 0y + f(();o; sgn(sin(6s2)))

03 = 6o + g(010; sgn(sin(bs32))),

where

f(B10; sgn(sin(f32))) = { : _ gf ii z:zgzz;g z 8’
for

g =arctans(—Il15in(610), lo + l1cos(610))
+ arctany (4302 — (2 + 83 -2 - 13 + 21011003(910))%,
23(12 + 12 + 2lglycos(610))?)

and

st < {177 )2
for

% = arctang(lgsin(ﬁi) + lysin(b10), lo — l3cos(ﬂi) + licos(61p)).

In above expression arctan, is defined as follows. Let

z=cos(f) and y=sin(f)

6, = tan'I% (principle value).
Then,
A 61, if z>0;
6 = arctany(y,z) = ( 01 +sgn(y)r, if 2 <0;
: Sgn(y)%? if x=0.

From the above expressions we see that the value of 633 depends not only on 8y,
but also on sgn(sin(fsz)), i.e., leading or lagging form. For a Grashof linkage, on each
component of the configuration space, the sign of sin(f32) does not change. For a non-
Grashof linkage, we note that for almost all values of 63, there exists a neighborhood
about 83, such that 63, depends on §;0 uniquely, except at the dead points, where
sin(f32) = 0. As we have mentioned in Remark 3.2.8(3), to deal with this problem in

such neighborhoods, an easy way is to re-label four bars such that sin(f32) # 0. One
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can always do so since all four bars cannot be aligned in this case. Based on the above
discussion we conclude that, in general, at each point in @, every element of the matrix
M can be expressed as a function of 64p. |

Differentiating the loop constraints (3.1.2), one can get a relation between (wyg,w,)

(:z) =N (Z‘j‘;) , (3.3.9)

and (wg,ws):

where

_ losin(83—6o) _Ilsin(ga-ol)

_ T5in(03—02) T,5in(83—02)
N = ( losin(ba 80 by sim(Brts) ) . (3.3.10)

lssin(93—92) lssin(93—82)

Again, following the same line of reasoning as in Remark 3.3.1, the matrix N is well-
defined locally in general.
We summarize the above discussion in the following theorem.

Theorem 3.3.2: The kinetic energy of a floating four-bar linkage can be represented

as
1 | ST
T= 5 < w,Mw > +—2-ercH , (3.3.11)
where w = (wg,w1)? and
M= (I NT)M(I{I) (3.3.12)

for matrix M given in (3.3.8) and matrix N given in (3.3.10). The elements of matrix
M are, locally, functions of 6. |
Remark 3.3.3: As in the case of planar multibody systems with open chains, the
kinetic energy of a four-bar linkage depends on the relative angles of the bars, although
such dependence appears more complicated. By capturing this property, we are able to
study symmetry and reduction, as will be seen in next sectiomn. n

Before ending this section, we give a property of the matrix N which will be used
in next section.

Proposition 3.3.4: If N is well defined,



Proof: Premultiplying (3.1.2) by R(—#6;) and R(—63), we get
losin(ﬂo - 92) + llsin(Ol - 92) + 1331:71(93 - 92) =0

and

losin(HO - 03) + llsin(Bl - 03) + l2sin(02 b 93) =0

respectively. The result follows immediately. B

3.4 Symmetry, Integral and Reduction

We shall show here that a floating four-bar linkage is a simple mechanical system
with symmetry in the sense of Smale, which has beeﬁ defined in Section 2.1. For
simplification, we make two assumptions. First, we restrict attention to the type of
Grashof linkages, i.e., Grashof condition 5+ I < p+d holds, and assume that the linkage
has been in either leading or lagging form. The four bars are labeled sequentially with
[y = 3. For the non-Grashof case we will give a discussion in the final remark of this
section. Secondly, we assume that the inertial observer is placed at the center of mass of
the system. We are able to do so since the kinetic energy in (3.2.11) is invariant under
the translation in inertial space. In [44] this process is explained via symplectic reduction
by the translation group R?.

Keeping the above assumptions in mind, we can identify each ingredient in the 4-
tuple (@, K,V,G) of simple mechanical system with symmetry. The configuration space
now is simply

Q=5'x S
Each point ¢ in @ is parametrized by ¢ = (6p,0;), the absolute angles of 0-th and 1-st

bar. The Riemannian metric on @ is, for each ¢ € @,
K(q)(vg, wq) =< vg, M(q)wy >,

where vy, w, € T,Q ~ R? and matrix M is given in Theorem 3.3.2. The potential
energy V has been assumed to be zero. Let G = S! ~ S0O(2) be the Lie symmetry

group. Its action ¢ on @ is defined by, for any ¢ € G,

(¢, (80, 61)) = (60 + 6,01 + ). (3.4.1)
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As have been discussed in Remark 3.3.1 and 3.3.3, matrix M depends on ;4 only. This
implies that G acts on ¢ by isometries. Therefore, we conclude that a floating four-bar
linkage is a simple mechanical system with symmetry. In addition, for this system, the

associated Lagrangian is given by
~ 1 1
L(q,vq) = 3 K(q)(vg,v9) = 5 < vg, M(010)v, >, (3.4.2)
where v, = (69,61)7, and the Hamiltonian is given by
1 -
H(q7p) = 5 < p7M 1(910)1) >, (3.4.3)

where p = (po,p1)T £ K*(q)(vs) = M(f10)v, € T:Q =~ ®*. It is clear that H is
G -invariant.
Remark 3.4.1: From the above discussion, we see that the dynamic structure of a
floating four-bar linkage is the same as that of a coupled, planar two-body [43] although
the explicit forms of the Riemannian metrics are very different. Therefore, in some
essential ways, the description of these two types of systems are parallel to each other.
Because of this, we will not prove the following assertions about reduction in detail. For
reference, see [43]. _ |
Let £ = £, a constant in G = R (the Lie algebra of S'). One can show that the

infinitesimal generator of the action & given in (3.4.1) corresponding to ¢ is simply

q(g) = £(1, DT, (3.4.4)

Then, the momentum map J : T*Q — G = s0*(2) for the cotangent lift action of ® (cf.

Section 2.1) determined by (2.1.26) is

2

(3(g,p),€) =< p,€q(q) >= &(po + 1) = v. (3.4.5)

From Noether’s Theorem, it is easy to show that v or u £ J(q,p) = po+p1 is conserved
along trajectories of Xy for the Hamiltonian H in (3.4.3) and that u is simply the net
angular momentum of the floating four bar linkage relative to an observer at the system
center of mass.

Since the dynamical trajectories are confined to a level set of the form J='(u) and

the group S!, viewed as the isotropy subgroup of the momentum value u, acts freely
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on J71(u), one gets the symplectically reduced dynamics X H, on the reduced phase
space P, = J71(u)/S? ~ § x R, where H, is the reduced Hamiltonian. For details
of symplectic reduction, see [1].

As in [44] it is also possible to Poisson-reduce the dynamics. Following the standard
Poisson reduction framework which has been shown in Section 2.1, we have the following
results.

Since the manifold M = T*(S! x S') parameterized by z = (6o,61,p0,p1) is
symplectic, a Poisson structure { , }as can be constructed, as we indicated in Remark

2.1.1. It is easy to show that this structure is of the form

) 0fi 0
{f1, fo}m(z) = Z(%-a—ﬁ—ég-ég—f) (3.4.6)

for all f;, fo € C°(M). The action of G = S on @ given by (3.4.7) is free and proper.
The quotient P = T*(S! x §1)/5! ~ S x R? carries a reduced Poisson structure.

Parameterizing P by Z = (610, p0,p1), the noncanonical Poisson bracket on P is given

by, N .
3f1 af2 0fr, 0f OA A
{fla fZ}P(z) ( apo 6010 (apl apo (347)
= Vf1 -Asz,
o 3 0 -1 1
where f1, fo € C®(P), Vf; = (;e’:'o o 6p1 )T and A=| 1 0 0 ]. Thereduced
-1 0 0
Hamiltonian H is given by
ﬁ(elo,Po,Pl) = H(govalap(),pl)a (348)

since the matrix M in (3.3.12) is a matrix of functions of 619. The reduced dynamics is

then immediately given by reduced Hamiltonian vector field
Xgz=AVEH

or, explicitly, by differential equations

( oH
Po —8910
OH
< P - 3.4.9
" " 9610 ( )
_ o _oH
(71T Bpr T Bpo



Unlike coupled two-body problem, Equation (3.4.9) involves complicated analytic expres-
sions resulting from the substitutions for 83 and 6, in terms of 8y and 6, (cf. Remark
3.3.1). Certain qualitative aspects of the reduced dynamics can still be explored such as
relative equilibria which we will investigate in the following section.
Remark 3.4.2: For non-Grashof mechanisms, following Remark 3.3.1, the system
still has symmetry group G = S'. It is clear that, in this case, if 8y and §; are just
parameters of configuration space ! x §!, instead of real angles of 0-th and 1-st bars, all
the results in this section are valid. However, for convenience, in next section we will still
use physical angles 8y and 6; for non-Grashof mechanisms. Then, 8y and §; will play
the role of local coordinates for S! x S and, consequently, (3.4.5), (3.4.7) and (3.4.9)
will be the expressions of momentum, reduced Poisson bracket and reduced dynamics in
local coordinates, respectively. |
One of the advantages of applying reduction theory to mechanical systems is that
it helps to make the dynamics of the system more transparent. For our system which is
of four dimensions in phase space, the reduction process make it possible to display the
dynamics by phase portraits on a lower dimensional space. To illustrate this, we show

two examples here.

Example 3.4.3:
Consider a floating four-bar linkage whose parameters satisfy the Grashof condition

and which is of lagging form. In particular, the parameters are chosen as follows.

m0=1, m1=1, m;;:l, m3=1;
=1, 6L =1, =1, I3 =1;
do3 = (-1.5,1), dg; = (1.5,1), dyo = (-0.5,1.3), d;2 = (0.5,1.3),

d21 = (—1.5, 1), d23 = (15, 1), d32 = (—2, /\), d30 = (2, /\)

Following the same procedure as in [44], the dynamics can be further reduced to a
symplectic leaf. The Hamiltonian on a leaf is a function of 610 and p = %(pl — po) and

the dynamics on the leaf is given by
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610

(b) A= ~5

Figﬁre 3.4.1 Phase portraits for a Grashof linkage
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dbho _ OH dp _ oH
& - o (610, p), 7 —-—%(910,9)

Therefore, for fixed value of angular momentum, one can draw the phase portrait on a
cylinder with coordinates 619 and p. Figure 3.4.1 shows the phase portraits for A = 0
and A = —5, respectively. On Figure 3.4.1(a), we see there is one center and one saddle
point. However, in Figure 3.4.1(b), there are two centers and two saddles. The difference
is caused by an offset in the position of center of mass of 3rd bar from the line connecting

the two joints on that bar. B

Example 3.4.4:

Consider a floating four-bar linkage whose parameters satisfy the non-Grashof

condition and the parameters are chosen as follows.
mog=1, mi=1, my=1, m3=1;
Iy=1, 6L =1, L =1, Is=1;
doz = (=2, A), do1 = (2,A), dio = (-1.5,-1), dq2 = (1.5,-1),

d21 = (—1.5, —1.4), d23 = (15, —1.4), d32 = (-—1.5, —1), d30 = (15,—'1)

Instead of displaying the dynamics on position-momentum phase space, here we try
to show it on position-velocity phase space. Since the dynamics cannot be further
reduced so that it depends on one relative angle and corresponding angular velocity,
one has to display the phase portrait in three dimensional space. For a given angular
momentum, the phase portrait sits on a surface in this space. In this example, this space
is parameterized by (élo,é,égg), where § is defined in (3.2.6). Figure 3.4.2 shows the
phase portraits corresponding to A = —15 and ) = 0, respectively. From Figure 3.4.2,
we see, again, the change of numbers of centers and saddles. n

In the next section, we will show how to compute the centers and saddle points

and associated bifurcations.
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(b) A=0

Figure 3.4.2 Phase portraits for a non-Grashof linkage



3.5 Relative Equilibria and Bifurcations
We first give the definition of relative equilibria and recall Smale’s theorem [42].
Consider a Hamiltonian system (M,Q, Xg), where M is a 2n-dimensional man-
ifold, Q is a symplectic two-form on M and, for some smooth Hamiltonian H on M,
Xy is Hamiltonian vector field determined by (2.1.9). Let G be a Lie group acting
on M symplectically and leaving H invariant. The following definition of a relative
equilibrium is standard [1].
Definition 3.5.1: Let F)t{H be the flow of Xz on M. Then 2z, € M is a relative

equilibrium if F% . (z¢) is a stationary motion, i.e., there exists £ € G such that

Fi,(2e) = exp(t6) (),

where G is the Lie algebra of the group G. n
Remarks 3.5.2:
(1) Let Xz be the Poisson reduced vector field as shown in (2.1.21). Then z is a

relative equilibrium if and only if
Xpg(n(ze)) =0,

where 7 : M — M/G is the canonical projection.

(2) A physical interpretation of relative equilibria is that if the dynamics of a system
is rotationally invariant, the dynamical orbit of a relative equilibrium appears to
be a fixed point for an observer in a suitable uniformly rotating coordinate system.

|

Given a simple mechanical system with symmetry, (Q,ix’ ,V,G), the associated

Hamiltonian system can be constructed by (T*Q, %0, Xg), where Qg is the canonical

two-form and the Hamiltonian H is given by (2.1.25). The symmetry group G acts on
T*Q by lifting (cf. (2.1.3)). The following theorem is due to Smale [42].

Theorem 3.5.3: For a simple mechanical system with symmetry (Q, K,V,G), define

augmented potential function by
1.,
Ve: @ —R:geVig) - 5K(9)(60(a), $a(9) (3.5.1)

51



for each £ € G, where £g is infinitesimal generator of the action corresponding to &.
Then z. = (ge,pe) € T*Q is a relative equilibrium if and only if ¢, is a critical point of

Ve for some £ € G and p. = Kb(‘l)(fQ(Qe))-
| |

Remarks 3.5.4:

(1) Tt can be shown that, for a given £ € G, V¢ has the symmetry,
Ve(24(2)) = Ve(2) (3.5.2)

for all g € G¢ := {g € G|Ad,€ = €}. If the action @ is free and proper, then the
quotient space, Q/G¢, is a smooth manifold and 7¢ : Q — Q/G¢ is a submersion.

Thus V¢ induces a function Ve on Q/G¢ such that
Ve = Vg o me.

(2) If G is Abelian, G¢ = G. In this case, we refer to Q/G¢ as the shape space, and
the points m¢(ge) as the relative equilibrium shapes. It can be shown that, in this
case, if 7¢(q.) is alocal minimizer of Vg , the corresponding z. = (g, p.) is a stable
relative equilibrium, and if 7¢(ge) is a local maximizer of Ve, the corresponding
Ze = (ge, Pe) is an unstable relative equilibrium.

(3) One can also use the amended potential in the sense of Smale to study the relative
equilibria (see [41]). |
Now we address the problem of computing relative equilibria of floating four-bar

linkages. In Section 3.4 we have shown that this mechaﬁism is a simple mechanical
system with symmetry. So Smale’s Theorem 3.5.3 is applicable to the system. Recall
that, by letting £ = £, a constant in G = R, the infinitesimal generator of action (3.4.1)
with respect to this £ is £g(q) = £(1,1)T. Hence, by Theorem 3.5.3, (ge, pe) is a relative

equilibrium point on T*Q if and only if ¢. is a critical point of the function
1
Ve(to,01) = -&(,0M (1),

where g. = ((6o)e, (61)e)s Pe = ((Po)e,(p1)e) and matrix M is defined in (3.3.12).
Applying Prop;)sition 3.3.4 and the 4 X 4 matrix M defined in (3.3.8), we have

Ve(8o,61) = —E2eTMe, (3.5.3)
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where e = (1 1 1 1)T. Since the elements of matrix M are, locally, functions of 10
or constants, the above V; satisfies (3.5.2) for all g € S. It follows that the induced
function V; shown in Remark 3.5.4(1) is
Ve(810) = Ve(6o, 61). (3.5.4)
Then, the critical points g, of V¢ will make (1) 2 (61)e — (6o)e to be the critical
points of Vg At relative equilibrium, the relative angles between bars keep unchanged
and the whole system rotates around the system center of mass with constant angular
velocity.
Remarks 3.5.5:
(1) Following Remark 3.3.1, it should be noted that, in general, given the value of
(610)e one cannot tell what the relative equilibrium shape of the linkage looks like.
The particular form (leading or lagging) has to be indicated at the same time.
(2) Vg given in 3.5.4 is the locked inertia if £ = 1. Its value at 8y equals the value
of the moment of inertia of the corresponding frozen system, i.e., the system with
all joints locked, about its center of mass. The above result shows that a relative
equilibrium shape corresponds to a frozen system which has maximum or minimum
value of moment of inertia within all possible frozen systems. Since £ is a constant,
without loss of generality, we let £ = 1 later. ]
In the rest of this section, we are particularly interested in assemblies which admit
configurations with reflection symmetry, which will be called symmetric configuration.
Applying the notations in Section 3.1, a floating four-bar linkage is of symmetric type if,

with proper consecutive labeling of the bars,

m; = ma, lh=13 (3.5.5a)
|do1| = |doal, |d1o] = |daol, |di2] = |da2l, [d21] = |d2s] (3.5.5Db)

and
az (8 ‘;) dso > 0. (3.5.5¢)

In other words it can form symmetric shapes as shown in Figure 3.5.1. It is not
hard to verify that any four-bar linkage which eaticfiee (3.5.5) has two such symmetric

configurations.
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Figure 3.5.1 A symmetric configuration

Although it is not easy to find the critical points of Vg analytically, for a particular
example one can easily find them numerically. Unlike the planar two body problem
[43] for which the dimension of the shape space equals 1, here the function VE has
many parameters. A natural question is to determine how these parameters affect the
relative equilibria, e.g. their numbers and location on shape space, etc.. Of course, it is
difficult to answer this question for completely arbitrary choice of parameters. However,
by leaving one or two particular parameters free such that the assembly preserves its
symmetric configurations and freezing all other parameters, one still can observe a
nontrivial bifurcation phenomenon. To illustrate this we consider an example.
Example 3.5.6: Let us choose the parameters as follows.

m0=1, m1=1, m2=1, m3=1;

doz = (=2, Ao), do1 = (2, o), dy = (-1.5,~1), di; = (1.5,-1),
dy; = (=1.5,—1.4), dy3 = (1.5,~1.4), dsp = (=1.5,—1), dgo = (1.5, —1).

Now the assembly has non-Grashof structure.
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Using Vg, for any Ao one can find relative equilibria (619) for both leading form
and lagging form, and hence, corresponding § which is defined in (3.2.6). As Ao varies
from —co to +00, one can plot a diagram for § versus Ao. Figure 3.5.2 shows the result,

in which solid dots represent stable relative equilibria, small circles represent unstable

relative equilibria. |
—1 [} t I | i [ ! &2 i l 1 | ! 1 | T
. vy - Q
fame S aae Q -
100 — —
{a Q— —
-100 — —

Figure 3.5.2 Bifurcation diagram: an example

From this example one can make the following empirical observations:
(1) There are two unbounded symmetric branches on the diagram "and and these

branches are bifurcated at some points. The bifurcations appear to be pitchfork
bifurcations.

(2) Almost any value of g can be a relative equilibrium for a particular Ag. In other
words the bifurcation diagram is connected globally.

(3) The number of relative equilibria can ba two, six and ten.

The first observation, which relates to the local bifurcation problem, is what we

r
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will concentrate on in the rest of this section. The others will be discussed later.

As we have seen, the function Vg of a four-bar linkage is a multiple parameter
function. One might expect very complicated bifurcation features with respect to these
parameters. Here, instead of considering a general structure, we study a special assembly
which admits a symmetric configuration. To avoid too many tedious calculations we

particularly choose the parameters of the assembly as follows.
Mg =m1 = My = m3 = 1; (3.5.6a)
dos = (—do,Xe), do1 = (do, ), dio=(-1,0), dy2=(1,0), (3.5.6Db)
dsy = (=da, A2), daz =(d2,A2), ds2=(-1,0), ds=(1,0), (3.5.6¢)

where dy and dy are fixed and dy > ds > 0, Mg, A2 € . Moreover, we consider the
non-Grashof case only, i.e., $+1> p+ .

Figure 3.5.3 shows two symmetric configurations for the above choice of parameters.
We will see that although only two parameters Ag and A2 are left to be free, the

bifurcation features with respect to these parameters are still informative.

The function V; now has the following form:
V; = %(2/\231'11(032) + dacos(8az) — cos(fs1) + docos(Bao)
+2Aq8tn(021) + dycos(821) — dodacos(f20) + docos(b10))
+%(23in(930) + Agcos(f20) — 2s1n(b10)) + C, (3.5.7)

where C is a constant determined by d;;, m; and the moments of inertia of the bodies,

I;. For 4,j =0, 1, 2, 3, 0;; = 0; — 0; satisfy the constraint equations
do + cos(010) + dacos(020) + cos(030) = 0 (3.5.8a)

Sin(&lo) + dgsin(920) + Sin(030) = 0. (358b)

In the following, at symmetric configuration, the variables will be denoted by
superscript “s” (say, 65, ), the formulas will be denoted by “|;” (say, f(f10)|s). As
shown in the example, the bifurcation diagram of relative equilibria will be parameterized

by (4, Ao).

56



Figure 3.5.3 Symmetric configurations

Theorem 3.5.7: For a floating four-bar linkage with parameters shown in (3.5.6), the

bifurcation diagram of relative equilibria has the following properties:

(1) There are two infinite branches in the diagram, one corresponds to 6§, in the
leading form, another one corresponds to 85 in the lagging form. We refer to these as

the symmetric branches.

(2) There exists a constant A such that no bifurcation occurs on the symmetric
branch of leading form if A, = A3; and, no bifurcation occurs on the symmetric branch

of lagging form if Ay = —A3.

(3) On the symmetric branch of leading (lagging) form, if Ay < A (=A3), there
exists a constant c¢; (c3) such that the relative equilibria are stable for Aq < ¢ (e3),
unstable for A\g > ¢; (c3), bifurcated for Ay = c¢; (c3); one the other hand, if
Az > A% (=A%), there exists a constant e, (e,) cuch that the relative equilibria are

unstable for Ag < ¢2 (c4), stable for A\g > ¢2 (c4), bifurcated for Ao = ¢1 (cy4).

-~1

(1]



(4) Assume Ap # £A3. Let

+e1 A2 + e )gte
+ _ 173 + €3 A2 x€3
€ = sgn chvte (3.5.9)
and
6% = sgn(6122£42), (3.5.10)

where ¢; and §; are constants which are determined by dy and d;. Then, the bifurcation
on the symmetric branch of leading form will be supercritical pitchfork if e*6+ < 0. It
will be subcritical pitchfork if e*§*t > 0. Similarly, the bifurcation on the symmetric
branch of lagging form will be supercritical pitchfork if =6~ < 0. It will be subcritical
pitchfork if €76~ > 0.

Remarks 3.5.8:

(1) Based on the te;hniques of bifurcation theory shown in Appendix 3.A, the proof
of the above assertions is elementary. However, two aspects have to be considered
before the bifurcation theory is applied. First, one has to determine the ezistence
of a bifurcation and where the branches are bifurcated. Secondly, applying the
techniques of bifurcation theory shown in Appendix 3.A will involve as high as
fourth order derivatives of the function Vg with respect to 619. However, as we have
shown in Remark 3.3.1, matrix M depends on 6y in a very complicated way which
makes explicit representing of high order derivative of VE to 610 almost impossible.
Therefore, when applying the techniques of bifurcation theory to this particular
system, one should consider the closure constraint equation (3.5.8) simultaneously.

(2) Although the proof of the above assertions is elementary, it requires a large effort in
calculations. We used MACSYMA to handle these computations. In the following,
we only give a sketch of the proof. |

Proof of Theorem 3.5.7: Note that the function Vg can be written as a function of

relative angles ¢, 020, and 830, which are related through constraint equations (3.5.8).

From (3.5.8), we can consider (locally) 629 and 630 as the functions of 6;9. Again, from

(3.5.8) one can generate the quantities %ig.zﬂ s and %394 s for any positive integer i.
10 10

Moreover, from Figure 3.5.3 it is easy to see that at symmetric configuration

0;0 =7 and 0‘150 = —050. (3.5.11)
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With above considerations, one can have closed form expressions for 8899.” |s and 86 6‘{ [5-
For instance,
8020 | = Zcos(85,)
901018 T d 10/
{aowl _ 12 (3.5.12)
061015 ™
and ) )
89 2 92
B ls = o (d2 — 2c08(6%)), (3.5.13)
629 ) 92 D
—575.9-}3 = I:—;%((—el-%})—(d? — 2cos(6%5))
and so on.

To prove assertion (1) in the statement of the theorem, one needs to show that at
symmetric configuration, the equation
ol =0
does not depend on Ag. Concentrating on the term involving Ag in Vg and applying
(3.5.11) and (3.5.12), one can show that the first derivative of that term with respect to
610 at symmetric configuration is zero. Since the rest of the terms of %]3 =0 are still
functions of 8, , one can see two infinite symmetric branches in the bifurcation diagram
for two different 6§,. Assertion (1) is thus proved.
Applying (3.5.12) and (3.5.13), one can show that the second derivative of the

function V¢ at symmetric configuration has the form

9? Vg! _ 0* H‘ B (d2 — 2c0s3(85,) W (0{0))
* 96, Ao dysin(03,) ’

(3.5.14)

where II is the summation of the terms not involving g in Vg. It is obvious that when

1« A 2dycos?(85)) — d3
Ar =2y = cos?(65,)sin(05,)’ (3.5.15)

%%%—Is will not depend on Ag. One can also show that with (3.5.15), %%‘—Is # 0 under
assumptions (3.5.6) and (3.5.7). This means that bifurcation may not occur on either
symmetric branch of leading form or symmetric branch of lagging form. Note that on
these different forms cos(83,) has the same value, sin(6],) has the same absolute value
but different sign. (See Figure 3.5.3) Thus, assertion (2) is proved.

As we have known earlier, the stability of relative equilibria depends on the sign
of %%%—ls. From (3.5.14) we see that %[s is a linear function of Ag. Using the A3 in

(3.5.15), the proof of (3) is straight forward.
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To prove assertion (4), we apply the bifurcation theory mentioned in Appendix 3.A.

Let Ag denote ¢; in assertion (3) for some suitable ¢. One can show that at (610, 3),

Ve Ve 0V, 9V

B~ OB, ~ BB, ~ 98002 (3.5.16)
Moreover
%/f(()fo,/\@ = ielil:ﬁjﬂa (3.5.17)
and )
-30%%;(0%,/\3) = §1Aa£6y, (3.5.18)
where “ +” corresponds to leading form, “ —” corresponds to lagging form and

€1 = "12dg(d2 - d())‘z(dé3 - dod% - d(z)dz - 2d2 + dg - 4d0),

€2 = 48d2dy((dy — do)? — 1)(d3 — d2)\/4 — (dp — d2)%;
€3 = 48d2d3(dy — do)*(d> ~ dod3 — d3dy — 4dy + d — 2do);

€4 = d%((d2 - d0)2 - 4)(d2 - d0)2\/4 - (do - d2)2;

es = 2d5((dy — do)* — 4)((dz — do)* — 4dy);

5 = (G2 = do)
' iz
5, — — (&3 + 3dod} — 3d3ds + 4ds + df)

2dy1/4 — (do — ds)?

Since (3.5.17) and (3.5.18) are not zero in general, applying the Lemma 3.A.3 in Appendix

3.A, we can say g;’T‘O is strongly equivalent to the normal form of pitchfork bifurcation.

In addition, the type of pitchfork bifurcation depends on the sign of (3.5.17) and (3.5.18).
The assertion (4) is proved. ]
Remarks 3.5.9:
(1) The condition of Ay # A3 guarantees that (3.5.18) and the denominator of (3.5.17)
are not zero.
(2) In general the bifurcation changes from a supercritical one to subcritical one at the
roots of numerator of (3.5.17). [ |
Example 3.5.10: To see how A; changes the bifurcation diagram with parameter g

we give following example. We will concentrate on the symmetric branch with respect
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to leading form. Let dy = 2 and dy = 1. Then € and 6 have the following form

4 _ oM 6.938% — 3.623

¢ 1.873 — 0.051)

6% = sgn(1.025 - 0.028),)

Then

ot = -1, if-7.426 < Ay < 0.488;
+1, otherwise.

Note that the region for A, is an approximation. So we can say that, when A; €
(—7.426, 0.488), the pitchfork bifurcation.is supercritical. Otherwise, it is subcritical.

Figure 3.5.4 shows this result. |

Before closing this section, we would like to make a few additional remarks.
Remarks 3.5.11:

(1) Although our discussion only concentrated on a structure of non-Grashof type, a
version of Theorem 3.5.7 also holds for the Grashof case.

(2) Up to now we have understood the phenomenon of bifurcation on the symmetric
branches. The global analysis of the bifurcations involves massive symbolic
computations. However, as shown in the Example 3.5.6 in this section and other
simulations, one can numerically determine a global bifurcation diagram. A large
body of such numerical simulations show that the branches in the bifurcation
diagram are connected. In other words, for any point in shape space, there is a
finite A¢ for which that shape determines a relative equilibrium. This is consistent
with the linearity of Vg in Ag. This property provides a possibility to control the
attitude of a space structure with a closed kinematic chain by simply changing the
position of the centers of mass of some bars.

(3) Our results in this paper rely on some ideal conditions, for instance, the symmetry
condition (3.5.5), and the absence of external and internal disturbances. One
may ask what will happen when these conditions are violated. The answer to
this question may relate to the notion of universal unfolding in bifurcation theory.
Numerical results show that it is possible to use the unfolding property to control

the shape of the structure near the bifurcation point. | |
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Appendix 3.A
In this appendix, we review some basic concepts and results of bifurcation theory.
The standard reference is [14].

Consider a single scalar equation

g(z,A) = 0. (3.4.1)
The bifurcation theory studies how the solutions z of this equation change with the
parameter A; or, more precisely, what type of bifurcation occurs with parameter
A. Without loss of generality, one can assume ¢(0,0) = 0. Moreover, we assume
g:RX R — R is smooth. This is one of the standard local (static) bifurcation problems
with one state variable, called the recognition problem, As with many bifurcation
problems, this problem can be solved successfully through singularity theory, in which
the related issue is called finite determinacy. Let z = (z,A). Near origin, the function
g can be written as

9(z)= > %(%)ag(0)2a+ > aa(2)z%, (3.A4.2)

laf<k+1 Joj=k+1
for some smooth functions a, defined in a neighborhood of the origin. Here we used the

conventions with multi-indices:

la = a1 + as, a! = (o) (a2)!,

o Qy (o _(?__a_ ial iag
=z A ’ (62) —(623) (a/\) :

A key quesﬁon is what terms in (3.A.2) can be ignored such that the values of coeficients
of remaining terms can be used to determine the qualitative behavior of the original
equation (3.A.1), for example, the variation in number of solutions. Singularity theory
solves this problem by finding a suitable change of coordinates such that function g is
equivalent to a standard model h, called normal form. A precise definition is given as
follows (see [14]).

Definition 3.A.1: Two smooth mappings g,h: R X R — R defined near the origin are
equivalent if there exist a local diffeomorphism of %2, (z,A) — (X(z,A),A())) at the

origin and a nonzero function S(z, ), such that

g(z,\) = S(z, V(X (z, \), A(V), (3.4.3)
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where X;(0,0) > 0 and A'(0) > 0. If A=), g and h are strongly equivalent. ]

From this definition we see that, since S(z, ) is nonzero, the solution of g(z,A) = 0
and h(X,A) = 0 are the same in the sense of diffeomorphism. From this point of view, by
means of singularity theory one can show why and what the high-order terms in (3.A.2)
do not effect the qualitative behavior of equation g(z,A) = 0. It should be noticed that
although this method does not tell us how to derive an appropriate normal form #, for
most physical problems, such as the one considered in this paper, it is not hard to pick
up some of the candidates from a large number of known simple polynomials of z and
A, or the model of normal forms which have standard bifurcation diagrams. This is in
essence the spirit of application of singularity theory to a physical problem.

Without considering detailed issues of singularity theory which are applicable to
bifurcation problems, we directly give the following result which will be used in the next
section. For details see {14], chapter 2. First we need the concept of germs.

Definition 3.A.2: Two smooth functions defined near the origin are equivalent as germs
if there is some neighborhood of the origin on which they coincide. Let &; ) denote the
set of equivalence classes of such functions. The elements in £; )\ are called germs. R

Lemma 3.A.3: A germ g € &; 5 is strongly equivalent to

ez + 6z (3.A4)
for k>2ifandonlyifat z=X=0
0 0 4y _ 0
g=go9==(5-)"" 9= 539=0 (3.A.5a)
and
0 d 0
€= sgn(—a—;)kg, 6= sgna—=39- (3.A.5b)
[ |

Remark 3.A.4: When k = 3 the normal form (3.A.4) provides a pitchfork bifurcation.
From this lemma, so is g if (3A5) holds. It is easy to show that if €§ > 0, the pitchfork

bifurcation is subcritical; if €4 < 0, the pitchfork bifurcation is supercritical. |
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CHAPTER IV

OPTIMAL CONTROL PROBLEM ON
A RIGID BODY WITH TWO OSCILLATORS

An interesting problem in multibody mechanics is the problem of nonholonomic
motion planning, or kinematic control problem. In recent research on various multibody
mechanical systems with symmetry, the theory of principal bundles with connections
has led to clear insight into the geometric structure of the problem, and provided a
common framework for the formulation of related optimal control problem. However,
explicit or partially explicit solution to the necessary conditions, given by differential
equations on phase space, for the optimal path and control is still a challenge. Although,
under certain conditions, the symmetries of the systems imply the existence of conserved
quantities for the differential equations given by the necessary conditions, working with
local coordinates at an early stage of the analysis usually causes difficulties in uncovering
such quantities. In this chapter, we consider a particular mechanical system consisting of
a rigid body and two point-masses, for which the structure group of the principal bundle .
is non-Abelian. For such mechanical systems, formulating the'necessary condition for

the optimal control in an intrinsic way is no longer trivial. We derive this condition by a
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perturbation method and a Hamiltonian formulation and, based on structure symmetry
and localization, explore the explicit solvability of optimal control for this system from
a Hamiltonian point of view. The procedures of symplectic and Poisson reduction are

applied systematically for this purpose.

4.1 Preliminaries

In this section, we give some mathematical background for this and next chapters.
We first recall some useful definitions and results about principal fiber bundles and the
theory of connections in differential geometry. The main references for this part are
[6,33]. Then, we show an important principal connection for the simple mechanical
system with symmetry, i.e., mechanical connection, which is originally due to Smale and

Kummer (cf. [24]).

4.1.1 Principal Fiber Bundle and Connections
Definition 4.1.1: Let B and { be smooth manifolds, referred to as the base space
and the total space, respectively. Let G be a Lie group, referred to as structure group.
A four-tuple p = (@, B, 7, G) is called a principal fiber bundle or principal G -bundle if
the following conditions are satisfied:

(a) G actson Q to the left, freely and differentiably, where the action is denoted by

:GxQ —Q
(4.1.1)
(9,9) — ®(9,9) 2 ®,(9) S 9- g5

(b) B is the quotient space of ¢ by the equivalence relation induced by G, i.e.,
B = @Q/G, and the canonical projection 7 : Q@ — B is differentiable;

(¢) @ is locally trivial, that is, for each z € B there is a neighborhood U of z such
that #=1(U) is isomorphic with U X G in the sense that ¢ € #71(U) — (7(q), ¥(q))
is a diffeomorphism, where ¢ : #~1(U) — G satisfies ¢(g-q) = 9#(q),V9 € G. &

Remark 4.1.2: In the traditional definition of principal fiber bundle, the structure
group G acts on @) to the right. In general, the choice of left or right actions is related to
the properties of the physical system under study. Therefore in this and next chapters,

we will also show the corresponding formulations for right action whenever it is necessary.
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For = € B, the fiber over = is a closed submanifold of @ which is differentiably
isomorphic with GG. For any point ¢ € @, the fiber through q is the fiber over z = 7(g).
The trivial or product principal fiber bundle is a special principal fiber bundle, in which
Q = BxG. In this case, G actson @ by ®(g,(z,h)) = (z,g9h) for z € B and g,h € G.

Let V be an r-dimensional vector space with basis v,---,v.. If a;,--+, a, belong
to @w*(Q), the space of real-valued k-forms, then Y I_, a,v, is called a V -valued k-
form. The space of V -valued k-formson Q is denoted by @*(Q; V). Let w € @w*(Q; V).
As areal-valued k-form, its exterior derivative satisfies the following important equation

(Cartan’s formula):

k
dw(Xo, -+, Xk) = I (1) Xs(w(Xo, -+, Xiy- -+, X&)
=0 (412)

+Z(‘—l)i-i-jW([X,‘,Xj],Xo,’",X—,‘,"',Xj,"',Xk),
i<y
where X; € £(Q),i = 0,---,k and X; denotes that X; is deleted. In particular, if
wew(Q;V),

(dw)(X,Y) = X(w(Y)) - Y(w(X)) - ([ X, Y ]), (4.1.3)

where X,Y € Z(Q). Note that, here we used the convention of exterior derivative in
[1], instead of the one in [33].

We now ready to define connections on a principal fiber bundle.
Definition 4.1.3: A connection on a principal fiber bundle p = (Q,B,n,G) is
an assignment to each point ¢ € @ a tangent subspace H, C T,Q such that, for
V, 2 {veT,Q | Tr(v) =0}, we have

(2) T,Q = H, & Vy;

(b)foreach g€ G and ¢ € Q, T;®,-Hy = Hyq;

(c) H, depends differentiably on g. |

In the above definition, the subspace V, is called the vertical subspace of T,Q

and H, the horizontal subspace. Figure 4.1.1 gives a clear picture of the definition of

connection.
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Figure 4.1.1 A Connection (cf. {6})

From the above definition of connection, the decomposition of the tangent space of
() leads to the decomposition of the vector fields on ¢ as follows. Let X be a smooth

vector field on @, from condition (a) in the above definition, at each point g € Q,

X(9)=X"(0) + X™9),

where X¥(q) € V, and X"(q) € H,. From the condition (c), by associating to each
point ¢ the tangent vector X"(q) and Xh(q)r, we get smooth vector flelds X¥ and X"
which are called vertical and horizontal component of vector field X, respectively. If
X?=X or X" =X, X is called vertical or horizontal vector field, respectively.

From the properties of horizontal subspace, we see that a connection defines a
subbundle over @ of TQ, i.e., a (horizontal) distribution 611 @ . Moreover, since the
fiber over any point in @ is differentiably isomorphic with Lie group G, it is easy to
verify that V, = {€o(¢)|€ € G}, where &p is infinitesimal generator of action given in

(4.1.1) with respect to £ € G or fundamental vector field on @, and the vertical vector
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field XV can be represented as, at each point ¢ € Q,

X"(q) = [¢(D]e(9);

where £(q) is a choice of an element in G at q.

An alternative way to define a connection is as follows.
Definition 4.1.4: Let G be the Lie algebra of G. A connection on a principal fiber
bundle p = (Q, B,7,G) is a G-valued 1-formon @, w € @w!(Q;G), such that

(1) w(éq(q)) =&, forany £ € G;

(2) ((2)"w)(X) = Adyw(X) for any X € Z(Q).
A G-valued 1-form w satisfying (1) and (2) is referred to as the connection form. [ |
Remark 4.1.5: Because of the condition (2) in Definition 4.1.4, we say that the
connection form is Ad-equivariant. If the Lie group G acts on @ to the right, the

condition (2) becomes
()" w)(X) = Ady-1w(X), VX € 2(Q). |

One can show that Definition 4.1.3 and 4.1.4 are equivalent (cf. [6]), that is,
given a connection form, w, there exists an unique decomposition of T,Q) or a choice of
horizontal subspace H, = Ker(w(q)) at each point ¢ € @; conversely, given a choice of
horizontal subspace, there exists an unique G-valued 1-form satisfies the conditions in
Definition 4.1.4.

One should note that, for a given principal fiber bundle, there exists an infinity of
choice of horizontal subspace/connection. This obvious claim turns out to be important
in the next chapter where we consider a family of splittings of the dynamics of Lagraﬂgian
system.

Let w € @*(Q;G). The covariant derivative of w, Dw € w*t1(Q; @), is defined
by

Dw(Xo, -+, Xi) £ dw(XE, -+, XP),

where X[ is horizontal component of vector field X; € Z(Q) . If w € w'(Q;7) is

the connection form of a connection, the covariant derivative of w, Q = Dw, is called
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curvature form of the connection. We give three important properties of the curvature
form below. For proof, see [33].
Proposition 4.1.6: Let w € @w!(Q;G) be the connection form and Q be the
corresponding curvature form. Let X,Y be any vector fields on (). Then, we have

(1) (@) R)(X,Y) = Ad,Q(X,Y);

(2) Structural equation:
UX,Y) =dw(X,Y) +[w(X),w(Y)]; (4.1.4)

(3) X, Y) = —w{[ X1, Y*]). .
If a connection is determined on a principal fiber bundle p = (Q, B, 7, G), certain
types of curves on () can be characterized. A smooth curve {¢(t),t € [0,1]} on @ is
called a horizontal curve if its tangent vectors are all horizontal, i.e., i%(t—tl € Hy),Vt €
[0,1]. Let {z(t),t € [0,1]} be a piecewise smooth curve in B. A horizontal lift of z(-),
{q(t),t € [0,1]},is a curve in @ which is horizontal and 7(¢())) = z(t),Vt € [0,1]. The
following theorem is crucial for understanding the holonomy or the geometric phases.
Theorem 4.1.7: Let {z(¢),t € [0,1]} be a curve in B and let go be any point in @
such that 7(go) = z(0). Then, there is a unique horizontal lift {¢(¢),t € [0,1]} which
starts at ¢(0) = qo. ]

The proof of this theorem uses the existence and uniqueness of the solution of an
ordinary differential equation and can be found in {33].

From Theorem 4.1.7, one can define a mapping, called parallel displacement,
P :1go = q(0) — ¢ = ¢q(1). It is easy to check that parallel displacement is a differential
isomorphism of the fiber through ¢(0) onto the fiber through ¢(1) and it commutes with
the group action @, i.e., ¥(®(g,q)) = ®(g,%(q)) for any g€ G and ¢ € Q.

Consider a closed curvein B, {z(t),t € [0,1]} with z(0) = z(1) £ 2. The parallel
displacement now is an automorphism of the fiber over zg, 7~1(zg). The set of all of
such automorphisms corresponding to all closed curves at z¢ in B forms a group, called
the holonomy group at z,, denoted by ¥, . One shows that ¥,, can be identified as a
sﬁbgroup of the structure group G'. An element in ¥, is called a holonomy at zq.

Given a connection on a principal fiber bundle p = (@, B,7,G), we now can
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compute the holonomy corresponding to a closed curve in B, say, z(-) = {z(t),t € [0,1]},
and a point ¢o € #71(z(0)) C Q. Assume {z(¢),t € {0,1]} is contained in an open set
Uof B. Let ¢ : U — @ be alocal section of the bundle and w € =!(Q;G) be the
connection form. Then the holonomy at go with respect to z(-) is the solution of the

following differential equation on G at t = 1:

dg(t) _ . (s
= ~Telg - (07w)(&(1))- (4.1.5)

Indeed, let ¢(-) = {q(t),t € [0,1]} be the horizontal lift of z(-) with ¢(0) = go
and g(-) = {g(¢),t € [0,1]} be a curve in G such that ¢(t) = @(g(¢),0(z(t))) =
@ y1)(o(2(t))), vt € [0,1]. Then,
dq(t .
% = To(a() o0 Ta(ty92(2) + To(a()) o€ (a(2(1))),
where £ 2 TgLg-14(1) 2 g(t)~1-g(t). Let us apply the connection form to both sides of

the above equation. Since ¢(-) is horizontal and w is Ad-equivariant, we have
0 = (oc"w)(2(t)) + & (4.1.6)

From the definition of £, we get Equation (4.1.5).
The G-valued form, o*w € w!(B,§), is called the local connection form. From
(4.1.5), if G is an Abelian group, the holonomy, or g(1), can be represented explicitly

g(l) = emp(——/o (o"w)(&(t))dt) = e:z:p(—//vcr"Q), (4.1.7)

where D is a surface in B with z(-) as the boundary and § is the curvature form of
the connection.
In next subsection, we consider an application of the theory introduced here to

simple mechanical systems with symmetry.

4.1.2 Mechanical Connection and Related Control Problems
With the background of differential geometry introduced in the preceding subsec-

tion, we now ready to give the basic ingredients in formulating the problems of geometric
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phases and optimal control in mechanics. Consider a simple mechanical system with sym-

metry (cf. Subsection 2.1.4), (@, K,V,G), together with an equivariant momentum map

J:TQ — G* satisfying

(J(g,v9), &) = K(q)(vg,€(q)) VEEG. (4.1.8)

In addition, we also let @ be the total space of a principal G-bundle p = (@, B,r,G).
Here, the base space B is also referred to as the shape space. On this bundle, the
mechanical connection is constructed as follows. At each point ¢ € @, define the locked
inertia tensor as the mapping

I(q): G — G~ (4.1.92)
‘such that

(L(g)n, &) = K(9)(ne(a).ée(q)) Vn,£€g. (4.1.9b)

From this definition, it is obvious that (I(q)n, &) = (I(¢)§, 7). This map is called as
the locked inertia tensor since, for coupled rigid or elastic systems, it is the moment of
inertia tensor of the relatively locked/frozen system (cf. Remark 3.5.5 (2)).
Defining a G-valued 1-form a € wl(Q;g) by
a:TQ@ — G
(9:0) = a(g,v) = T7(g)(I(g, ),

one can show the following theorem due to Kummer and Smale.

(4.1.10)

Theorem 4.1.8: The G-valued one-form « in (4.1.10) defines a connection, referred
as mechanical connection, on the principal bundle p = (@, B, 7, G).

Proof: We need to check conditions (1) and (2) in Definition 4.1.4. For any v € G*,
(v, aléa(0)) = (v T (9)(I(&(0)))
= (J(€(9)), T (g
= K(q)(€q, (X (9)v)q)

= ()T (), &= (v, &)
So, condition (1) is proved. To prove (2), we first show that the locked inertia tensor

has the equivariance property:
I(®4(q)) - Adyl = Ady-11(q) - €. (4.1.11)
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For any n € G,
(I(24(9))AdgE, 1) = K(24())((Adg€)a(®4(0)) nq(®4(2)))
= K(q)(Tg-4®5" (Adg€)Q(24(9)), T542 5 ' 10(24(0)))
= K(q)(§a(9), (Adg-1m)q(q))
= (I(q)¢, Adg-1n)

= (Adg- 1(g)¢, ).

So, (4.1.11) is proved. Here we used the relation (cf. Proposition 4.1.26 in [1])
T2 (Ma(24(0) = (Adg-17)q(g).
N
Now, let { = (Lja)(q,v). Then,
(= (®g(9), Ty®y(v)) = Lg - 9) 7' I(g - ¢, Ty @gv) = I(g - ¢) ™ Ad;-1 I (g, v).
This implies I(g - q)¢ = Ad;_lJ(q,v). But, by (4.1.11),
I(g - 9)¢ = I(g - 0)Ady(Ad,1C) = Ad}—: I(Ady=10).

Therefore, we have J(g,v) = I(¢q)(Ad,-1() or ( = Ad,1(q)"'JI(g,v). Condition (2) is
proved. | |

From the connection theory introduced in the preceding subsection, when the
connection form is defined, we have a vertical-horizontal splitting of the tangent bundle

TQ. For the mechanical connection given in (4.1.10), we have
T,Q = (Vert), & (Hor), (4.1.12a)

such that, for each v, € T,Q,

vg = (@(vg))Q(9) + (g — (a(vq))e(9))

(4.1.12b)
= (I(q) 7" 1)e(9) + (v — (@)™ 1)e(2)),
where p = J(v,). It is readily shown that
" Hor = {(g,v) € TQ|I(g,v) = 0}, (4.1.13)

and the splitting in (4.1.12) is orthogonal one with respect to metric K.
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To formulate the kinematic control problem explicitly, we consider the trivial
bundle, i.e., p = (B X G, B,n,G). Here, the control is internal to the system, which
leaves invariant the conserved momentum map J. Since, by definition, a principal fiber
bundle is locally trivial, the equations we have below are locally true in general.

The tangent space at each point (z,g) € ) is represented by
T(_,L.’g)Q =T.B X TgG

and let a tangent vector in T, )@ be represented by v(z,g) = (Vz, Vg)(z,g) = (V) 9°€)(z,g)
where £ = TyL,-1v, € G. The Lie group G acts on Q following the rule ®(h,(z,9)) =
(z,hg), where h,g € G and z € B. Then the infinitesimal generator corresponding to
nNEGis

nal0)= | _ oeanen) (2,0 = (0.70). (4.1.14)

€=

Using the G-invariance of K, we have
I(g,v) - n = K(2,9)(vs,9-€),(0,7-9))
= K(z,€)((vs,£),(0, Adg-17))
= (T(2)¢, Adg-1n) + (3(2)(v2), Adg-1m)
= (Ad;+ ([(2)¢ + 1(2)(v:)), ),
where e is the identity element in G; I(z) 2 I(z,e) is referred to as (local) locked
inertia tensor at z, represents the metric on G, and y(z) : T, B — G* comes from the

cross term when the metric K is written in terms of metrics on B and G. Here, the

metric on B is induced from K. Therefore, we have, for u = J(q,v),

p=Ad,T(2)E + A1 (2)(vz), (4.1.15)

or
£ =W(a) " Adzp - (=) s(2)v.,
or, by left action,
vy =g ([(2)" Adtu = T(z) ™ )(2)vs). (4.1.16)

Given a closed curve z(-) = {z(t),t € [0,1]} in B and an initial point gy = (29, go) in

@, using (4.1.16) one will be able to compute the shift, or the phase, in G. The phase
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generated by the first term in (4.1.16) is referred to as a dynamic phase and the phase
generated by the second term in (4.1.16) is the holonomy, referred to as geometric phase.
One can show that I(z)~1)(z)(£) is, in fact, the value of the local connection form of
the mechanical connection at (z,).

Assuming that the vector £ or the velocity of the path in B can be directly

controlled, from (4.1.16), an associated kinematic control system can be set up as

- - o (4.1.17a)
g=g-({(2)" Adip—T(z)" s(2)u),

or simply

¢ = Xu(q) +H(qg)y, (4.1.17b)

for ¢ = (g9,z) € Q, where X,(¢) = (0,9 ~ﬁ(z)—1Ad;,u) is the drift, H(q) : Tr(q)(B) —

T,Q is the horizontal lift operator and u € Tr(q)(B) is a tangent vector on shape space

representing controls. Two control problems for this system can be framed as follows:

(P1) Given two points go and ¢; in @, find u(-) steering go to g1 at a specified time;

(P2) Given two points g and ¢; in @ on the same fiber, find u(-) steering go to ¢
while minimizing

T
/ <u,u>pg dt
0

for Riemannian metric < -,- >p on B and the fixed final time 7" > 0 subject to
(4.1.17).
Remark 4.1.9: One should note that the vector field given in (4.1.17) is G, -invariant
on the left, and not invariant under the action of the structure group G. In addition, It
is obvious that for any control law, the solution of (4.1.17) satisfies J((z,¢),(%,9)) = k-
This means that one can equivalently construct the above control problems on principal
fiber bundle (Q' = B x G, B,7',G,), where 7' = m|g:. On this bundle, the control

system (4.1.17) becomes

{ cTt (4.1.18)

b= g-(Iz)"p — L=) "y (@)w),

which has symmetry under the action of structure group G,. B

75



The problems (P1) and (P2) are standard problems in control theory, namely,
controllability and optimal control. (P1) is equivalent to the problem of accessibility
and the corresponding condition is known via Chow’s theorem [g]. In addition, if p =0
and the system is accessible, (P2) is the isoholonomic problem in [31], or a special case
of the problem of singular Riemannian/sub-Riemannian/nonholonomic geodesics (8,48].

In the next section, we will formulate the control system and corresponding optimal

control problem for the system of a rigid body with two oscillators following the above

procedure.

4.2 Momentum Map and Connection

In this section, after a complete derivation of the momentum map by means of
standard method, we give an explicit expression of the mechanical connection for the

system comnsisting of a rigid body with two oscillators.

Figure 4.2.1 A Rigid body with two oscillators



The mechanical system we consider is shown in Figure 4.2.1. Here, 7y is the
position vector of the center of mass of the rigid body or carrier relative to the center
of mass of the system; r; and r, are the position vectors of two oscillators with point
masses my and mg relative to the center of mass of the system, respectively; the mass
and moment of inertia tensor of the carrier are denoted as mg and Iy, respectively; @,
and @, are the position vectors of two oscillators relative to a frame (not displayed)
fixed on carrier and A € SO(3) determines the orientation of the carrier with respect
to an inertial frame (not displayed). We assume that no exterior force/torque affects
the system and the potential energy is zero. This implies that the inertial frame can be
placed at the center of mass of the system and ro,7; and r, are related by

\ :
> miri = 0. (4.2.1)
i=0
For now, 7y and 7, (or @; and ;) are assumed to be arbitrarily time dependent
vectors. Later, we will impose constraints on them to study the effect of their motion
on the motion of the carrier.

From the above setting, we have the configuration space Q = (®2)? x SO(3) with
local coordinates ¢ = (ry,r2,4) and its tangent bundle TQ = (TR?)? x TSO(3) with
local coordinates (g,v) = ((Tl,Tz,A),(’f'l,f‘g,Aﬁ)). Here, denoting by Q the vector of

angular velocity of the carrier with respect to the body fixed frame, we used the fact

A=AD (4.2.2)
with the standard isomorphism
IR s0(3)
0 -z3 (4.2.3)
(z1,22,23) = | z3 0 -z
-T2 T 0

The Lagrangian of the system can be determined easily as

.. Ay 1 1 mi. .
L((Tl,rz,A),(Tl,’l‘z,AQ)) =§ < Q,I()Q > +§(m1 + ;n—i") < T,T1 >

(4.2.4)
mimmo

1 m3 .. .
+ =(me+ —2) < F9,72 > + < T, Ty >,
2 mo

mo
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where < -,+ > is the inner product in ®3. This Lagrangian is given by a Riemannian
metric K on @Q,i.e., L(g,v) = %K(q)('v,v),where, for (ul,uz,Aﬁ) and (wl,wQ,Ag) €
Tiry,r0,0)Q 5

K (71,72, A)((u1, uz, AQ), (w1, wy, AZ)) £

_ m3 m}
< Q, L= > +(m1 + —'—) < up,wy > +(m2 + —) < ug,ws > (4.2.5)
mo L

mimy mi1my
<up,wy >+
mo mo

Let G = SO(3) act on @ by
3 :50(3) x (R*)? x S0(3)) — (R*)? x S0(3)

4

< Uz, wy > .

(4.2.6)
(A, (72,79, B)) — (Ary, Are, AB).

From (4.2.5), one can show that G acts on () by isometries. Therefore, by definition (cf.
Subsection 2.1.4), the system (Q = (%) x SO(3),K,V =0,G = §0(3)) is a simple
mechanical system with symmetry.

By direct or some intrinsic calculations on SO(3) (cf. [49]), one finds the Legendre

transform, at (¢,v) € TQ, as

2

mimy . m .
! 27"2,(7712 + m—Z)Tz +

mimy 7.‘1)

o 2
K"(q)(v) = D3 L(g, ) = (ALQ, (mq + —L)i; +
my mg

The infinitesimal generator of the action in (4.2.6) corresponding to fe so(3) is

d " ‘ ~ o~ o~
éQ(Q) = E 0@(665’(7‘13"“2714)) = (€T1,£r2a€A)'

€=

Then from (4.1.8), the momentum map is calculated as follows:

(I(q,v), & =(K"(q)(v), £&q)

. - 2
=(ALSQ, EA)+ ((m1+ —L)i +
my

myms

T2, 27‘1)

mm

m% . 2. -
+ {(me + —)F2 + *1, &ra)
mo

1
mo
mime

2
m .
=(ALQ + (my + m—l)rl X 71+

1
™o

2
+ (m2 + %)7‘2 X 7"2 + 2 T9 X ’f‘l,f). (427)
0

mim
m
For vector space TpSO(3) for some B € §O(3) , pairing ( -, -) is defined as

' (,):T*SO(3)x TSO(3) — R

(4.2.8)
(A1, Ag) — %trace(AlAZT).
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In obtaining (4.2.7), we also used the facts:
Zy=z Xy, Vz,y € ®3,

and

AzAT = Az, Vz € R%,VA € SO(3).

Letting p = J(q,v), from (4.2.7) we have

mym;
mo
mim
mo

2
/.L=A109+(m1+g-1‘)7‘1)(f'1+ r1 X T2
0

(4.2.9)

m3 ; 2 }
+(m2+E—)7‘2X7'2+ Ty X T1.
0

One can show that g is, in fact, the total angular momentum of the system.

It is clear that ((R3)% x SO(3)) is a trivial bundle with the structure group SO(3)
and the base space (%3)? coordinatized by (Q1,Q2). Using coordinates (Qy,Q2, A) for
the configuration space @, the angular momentum in (4.2.9) can be rewritten as follows.

From Figure 4.2.1 and Equation (4.2.1), we have

r =71+ AQ;, 1=1,2
and
r=-A(eQ1 + €Q2),
where €; = —"t—— i=1,2. Equation (4.2.9) can be rearranged as
p=A((Io + AL)Q + D1Q1 + D12Q2), (4.2.10)
where

Ay = -m(e;Q} + Q% - (1G4 + €Q2)%)
Dy =m[(1- 61)61@1 - 6162@2]

Dy = m{~a1e2Q1 + &2(1 — €2)@a).
By (4.2.10), we have

Q= (Ip+ AL) Y (ATp ~ (D1Q1 + D2Q2)) (4.2.11)
or, by (4.2.2),

o~

A=A[(Io + AI) YATu — (Iy + AL)"Y(D1@1 + D2Q-)], (4.2.12)
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SA T
1=

where [-] = (-). Comparing (4.2.12) with (4.1.16), we see that

Tioek(@1,Q2) 2 I+ Al

is the (local) locked inertia, and

©(Q1,Q2)(Q1,02) & [(Io + AL) (D101 + D2Q2)]

is the value of the local connection form at point ((Q1,Q2), (Q1, Q1)) € TB with respect

to the mechanical connection. This connection form can be explicitly given by
&(Q1,Q2) = I3 (D1dQy + D2dQy)
= mI;5 (1~ e)e1 1 — e16Q2)dQa (4.2.13)
+(—aa@ + (1 -)02)dQ.],
where the operator " is the inverse of operator ™ (cf. (4.2.3)).

Equation (4.2.12) can be used for computing the phases of the system and the
related optimal control problem mentioned in the preceding section. In particular,
when p = 0, it can be used to compute holonomy, or geometric phase and to solve
the isoholonomy problem. It should be noted that, in this case, the angular velocity

vector of the rigid body in ‘a body fixed frame is related to the connection form by
Q = -0(Q1,Q2)(@Q1,Q2)
=mI L [((1- e)aQ1 — 12Q2)@1 | (4.2.14)
+ (~aeQ1 + &(1 - ©)32)Q:).
In the following sections, we will consider the case y = 0 only. In addition, we will
assume that the oscillators are confined to move along certain guide-ways. Under this
assumption, the bundle structure will be simplified and the equations for phases and the

connection form on such a bundle can be easily derived from those we have found.

4.3 Planar System
We now assume that the vector r, BQ); and BQ; are kept in the same plane in
inertial space and that m; = my (so € = € = €¢). In addition, we choose a body-fixed

coordinate system (or frame) 0-zyz on the carrier with 0-z axis perpendicular to the
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plane and the origin of this frame is placed at the center of mass of the carrier (see Figure
4.3.1). We also let the two oscillators move along two parallel guide-ways such that, in

the 0-zyz frame,

Ql = ("'la :L']_(t),O)T and Q2 = ( l,.’L‘g(t), 0)T7

where z1(t),z2(t) € R and [ is the distance of the guide-ways to the origin of 0-zyz
frame. It is clear that the configuration space is reduced to Q = R? x S, which will be

coordinatized by (z1,z2,8), and the principal fiber bundle is (R? x 5§, R2,x, S1).

Figure 4.3.1 A rigid body with two oscillators: planar case

Setting p = 0, the angular velocity Q = (Q,,Q,,Q.)7 in (4.2.14) is of the form

Q. =0
Qy =0 (4.3.1)
Q.= 0= 2L, — 4)

Ilock

where

Lok 2 I + me(2® + (1 = €)z? = 2ezy25 + (1 — €)23)
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with I, the moment of inertia of the carrier about z axis. It is obvious that the local

connection form corresponding to the mechanical connection on the principal bundle

(R? x Sl,§R2,7r,Sl) is
mel

w(zy,23) = — (dzy — dz2). (4.3.2)

Ilock

For simplicity, we further assume that the amplitude of motion of each oscillator

is very small in comparison with the the spacing of two guide-ways, i.e.

|z:]/1 << 1. (4.3.3)

Under this assumption, using Taylor expansion (up to quadratic terms of z;), we get an

approximate w (with the same notation)

_ mel(I, + 2mel® — me(2® + (1 — €)al — 2exy 25 + (1 — €)73))
v=- (I, + 2mel?)? (dzy = das).

The above procedure is called localization in [23]. Since we are interested in the motion
of the carrier generated by the motion of the point masses on a closed curve in shape
space, the above w can be further simplified as follows. Applying exterior derivative to

the above equation, we have

2mel
dw = —m-ﬁ)—z(il)l + xz)dd)l A dIE2

mel
= —(I—md(iﬂ%de - x%dzl).
z

Then, under the assumption (4.3.3), we can take (for closed paths in shape space)

mel 5

= —m(midzz — z2dzy), (4.3.4)
modulo an exact one-form.

Let ¢(-) be any closed curve in shape space ®2. Since $! is Abelian, from (4.1.7),
the corresponding geometric phase or holonomy, i.e. the drift rate of the carrier about
z-axis, will be

b, = — /cw = _/CU?I%@%({M —z2dz). (4.3.5)

Using (4.3.5), we now compute the geometric phase for the case in which both

oscillators follow sinusoidal motions with different amplitudes, frequencies and phase

angles.
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Let ]
z1(t) = aysin(@t + ¢1)

.’L'g(t) = agsin(nwt + ¢2)
for t € (0,27 /®), where @, a;, ¢; are real numbers and n is an integer. Then, the closed
curve in the shape space forms a Lissajous figure. Substituting the above z;(t) into

(4.3.5), we have

2019 2 2 .
8z = { "“‘7(}.32‘3,1222‘33"‘ cos(¢2 —2¢1) ifn=2;
otherwise.

Therefore, n = 2 is the necessary condition for generating nonzero geometric phase
under assumption (4.3.3). With this condition, ¢2 — 2¢; = 2kx, for k =0,%1,--- gives
the largest phase shift and ¢y — 2¢; = (2k + 1)7/2, for k = 0,+1,-- -, gives zero phase
shift.

We next formulate the optimal control problem for this particular mechanical
system. For convenience, we re-scale 8 by the factor (-m_%il;‘[f)ﬁ' . Then the third equation
of (4.3.1) becomes

6 = z%a’:Q - a:%a':l.

The optimal control problem is to find control u4(-) and us(-) to

1
minimize/ (u? + ud)dt (4.3.6a)
0
subject to
5:1 = Ui
i’z = Usg (436b)

0 = z2uy — 23y,

with given boundary conditions
z1(0) = z1(1) = 22(0) = z2(1) =0, 6(0) =6, 6(1)=6;. (4.3.6¢)
Remark 4.3.1: It should be noted that the difference of §(0) and (1) should not be
too large because of the assumption on our simplified model. ]
Since the optimal control problem (4.3.6) has fixed boundary conditions, one needs

to check reachability for the control system (4.3.6b). Define two vector fields on ®% x $?

1 0
g1(q) = (‘l) 92(q) = ( 10) .
3 ~—z}
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Then (4.3.6b) can be represented as

¢ = g1(q)w1 + ga(q)us-

0
[gl, [gl, 92]](Q) = (g)

and g1(q), 92(9), [91, [91, 92]](¢) are linearly independent for any ¢ = (z1,22,0) € R2x S!.

It is easy to check that

By Chow’s theorem, we conclude that, for the system (4.3.6b), there is an open set about
the point ¢ = (0,0,8) (or any other point in %2 x S1) such that any point in this set
can be reached from ¢ by a piecewise constant input (uq,us).

Theorem 4.3.2: If (z1(-),z2(-),0(-)) is an optimal trajectory with control
(uf(+),u3(+)) for the optimal control problem given by (4.3.6), then there exists A(-) =

(A1(2), A2(+), A3(-))T on [0, 1] satisfying the ordinary differential equations

T, = ul M= —2X3z1usy
Ty = uy Ay = 2X3zqul (4.3.7a)
0 = ciul — ziu} | Az =0,
where
ui(q) = "%()‘1 —A3z3) and wi(q) = %(,\2 + A3z?) (4.3.7b)

with boundary conditions

£1(0) = z1(1) = 22(0) = z2(1) = 0,6(0) = 6p,0(1) = 6. (4.3.7¢)
Moreover, the system (4.3.7) is completely integrable.
Proof:
The equations (4.3.7) can be derived easily from the Maximum Principle. The

derivation is omitted here. We just prove solvability. From (4.3.7) one can get differential

equations for the geodesics:
£y — /\3((31 + 222):i32 =0
Iq + /\3(:171 -+ 2:2).’i71 =0 (4.3.8)

Z3 + 2(.’82 - a:l)j)lil'ig + /\3(.’1}1 + :1:2)(:1?%2'71 + 2:%2?2) =0
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for some constant A3. To integrate (4.3.8),let w = z; + 5 and v = z; — z3. We have
¥ = Azgww
W = —A3wo.

By integrating the first equation and substituting the result in second equation, we get,

for some constant c,

A
W+ Azw(c+ —§§w2) =0,

which is the equation for a quartic oscillator, solvable by elliptic functions, i.e.

t—/ d +C
) VO F aw? F bw? 2

for a = 523—9, b= Q.;i , where C; and C; are integral constants. Therefore, we conclude
that if there exists an optimal solution (g(t),u(t)) to (4.3.6), it can be determined

explicitly, i.e. the boundary value problem (4.3.6) is solvable. |

4.4 Three Dimensional System

Starting from this section, we assume that the system is free to move in three
dimensional space. Again, we assume that the masses of the two oscillators are equal,
i.e., m; = mg. On the carrier a coordinate system 0-zyz is set such that the three axes

are principal axes, i.e., the moment of inertia Iy of the carrier can be represented as
Iy = Diag(I;, I, I,).

Two oscillators are allowed to move on the carrier such that Q1 and @ satisfy

Q1(t) = (z1(t)cos(thy), z1(t)sin(vy), )T

Qa(t) = (aa(t)cos(n), aa(t)sin(yn), —1)T,
where | > 0 and ; for ¢ = 1,2 are constants. This means that the two oscillators are
restricted to move along their guide-ways which are parallel to the 0-zy plane and are
at an equal distance (1) from the plane (see Figure 4.4.1). The configuration space now
becomes Q = R? x SO(3) which will be coordinatized by (z1,z3,A), and the principal
bundle is p = (R x SO(3),R2, 7, SO(3)).
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Figure 4.4.1 A rigid body with two oscillators: 3D system

In the above setting and under the condition p = 0, the angular velocity of the

carrier in (4.2.14) now is of the form

Q= Ql(itl, $2)(f?1 + Qz(zl, 272)(1'12, (4.4.1)
where
w11 Way
A 1 N 1
Ql = TN W12 Q‘Z = T N Waa
dEt(Ilock) w13 det(Ilock) Was

with det([jock) and wij, for ¢ = 1,2 and j = 1,2,3, being polynomials of z; and z,.

And, the local connection form for the mechanical connection on principal bundle p is
w = _Ql (:1:1, :Eg)dﬂ)l fond Qg(xl,ZQ)dQZQ. (442)

Although the above restriction on the motion of the two oscillators simplifies
the bundle structure of the system, the expression of the connection form is still very
complicated. In the rest of this section we will only consider some problems with special
Y1 and .

An interesting question is how to choose the constant parameters so that the above

three dimensional system reduces to the planar system discussed in preceding section.
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A natural guess may be that
AN
Y1 =P = 9. (4.4.3)

But this is not the only condition. In fact, when (4.4.3) satisfies, wis and wy3 have

simple expressions:

1 .
Wiz = =g = 562(13/ - Iz)mzlzsm(21,b)(x2 - 211).

Thus, if I; = I, or Y =0 or ¥ = F, then w3 = w3 = 0, i.e., the rigid body will only
move (rotate) about the axis perpendicular to the plane formed by the guide-ways of two
oscillators. Otherwise, in general, the parallel motion of the two oscillators will cause
the rigid body to drift about z axis. In other words, when 1, = 1, holds, a sufficient
condition for planar drift is that the carrier has axial symmetry about z-axis, or that
two point masses move along the lines which are parallel with the same principal axis
(0-z or 0-y) of the carrier.

Explicitly, if ¢ = 0, i.e., both oscillators move parallel to principal axis 0-z, the

local connection form is

eml(dzy — dzjy)

_ T
me(e — 1)z3 + 2e2mz1z9 + em(e — 1)z — 2emi? - I’ 0"

w = (0,

If ¥ = %, i.e., both oscillators move parallel to principal axis 0-y, the local connection

form is

eml(dzy — dza)
me(e — 1)z + 2e2mzyz9 + em(e — 1)z? — 2emi? - I’

w=( 0, 0)T.

The nonzero terms in above w’s are the same as w in (4.3.2) (up to a choice of the
coordinates system).

From the above discussion, it is apparent that if one is interested in full three
dimensjonal motion of the carrier body, some skewness in the directions of particle
motions would be necessary. In the following, we set ¥ = 0 and %, = 5. With

this setting, the constraint on the motion of two point masses becomes

Q1 = (21(1),0, —l)T and @, = (0,$2(t),l)T.
The body angular velocity {2 can still be given by

Q= Qq(z1,22)21 + Qa(21, 22)22
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for ; and Qs given in (4.4.1). The explicit expressions of the components of Q;, w;;,
are still complicated. We show them in Appendix 4.A.
‘We now show that the kinematic control system corresponding to (4.1.17) with
g = 0 is controllable in a neighborhood of (0,0, A) for any A € SO(3). From (4.2.12)
with g = 0, the kinematic control system is of the form
Ty = U
Ty = U (4.4.4)
A = A(ﬁ],’ul + ﬁz’ng).
Let ¢ = (z1,22) and ¢ = (2, A) be a point in Q. Equation (4.4.4) can be represented
as

¢ = X1(q)w1 + Xa(q)ua, (4.4.4)

where X1(q) = ((1,0), AQ1(z)) and X3(q) = ((0,1), AQy(z)).
Again, we can use the rank condition in Chow’s theorem [g] to check the control-
lability of the system. To this end, we need a formula to compute the Lie bracket of

vector fields X; and X, on R? x SO(3), where X; is represented as, in general,
Xi(z, A) = (Fi(z), AGi(z)) i=1,2 (4.4.5)

for smooth mappings F; : 2 — ®? and G;: R — R3.
Remark 4.4.1: The classical methods to express Equations (4.4.4), as well as vector
fields in (4.4.5) is to introduce Euler angles or other local coordinates, which are
very important for numerical calculation. However, such expressions are usually very
complicated and very hard to use for qualitative analysis. In the following analysis, we
will use an intrinsic method, namely, keeping the differential equation (4.4.4) in matrix
form and using the orthogonal property for the matrices only. As we will see later, this
method will give us a clean expression for the necessary conditions for the optimal control
problem and make reduction of the necessary condition possible. For other references
on the same treatment of problems on modeling and control of mechanical systems on
50(3), see [35,49]- n
Let X be a smooth vector field on a smooth manifold P. Let ¢(-,p): R — P :

t — ¢(t,p) to be the tangent curve of X at p. i.e., it is a smooth curve in P such
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that ¢(0,p) = p and %|t=0¢(t,p) = X(p). Al of such tangent curves at p forms an
equivalent class, which is denoted by [¢(t,p)]. Then, the tangent vector at p can be

represented as

X (p) = [4(t, )]

and the Lie derivative of a smooth function f on P along vector field X, Lx f(p) =

df(p) - X(p), can be computed by using the equivalence class of curves, i.e.,

Lx f(p) = [f o (¢, p)] (4.4.6)

This expression is well defined since fo ¢(-,p): R — R for given point p on P. We
then have the following result.
Lemma 4.4.2: Let X; and X, be two smooth vector fields on P, and ¢; and ¢, be

any corresponding tangent curves at p. Then

(60,0100 = 5| (B@ne) - X@E)NE @40

for any p € P and any smooth function f on P.

Proof: With notation (4.4.6), in local coordinates, we have

LXILX2f(p) = [[szf o ¢1(t,p)]]
= [[f o d2(s, 1 (t, P))1]
d d
f(#2(s, d1(t,p)))

=E —-5=0

ds
4 Dt p) - Xa(ba(t))

t=0

T dt
= (DDS(p)- Xa(p)) - Xalp) + DI) - 5| Xa(dn(t,p).

t=0

Since (DD f(p) - X1(p)) - Xa2(p) = (DD f(p) - Xa2(p)) - X1(p), the Lie bracket of vector
fields X; and X, is

[ X1, X2 J(N)(P) = Lx, Lx, (f)(P) — Lx: Lx;(f)(P)

- % _ (Xa(1(0) = Xa(6a(DN)

for any p € P and any smooth function f on P. ]
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Now we use (4.4.7) to compute the Lie bracket of two vector fields on %2 x SO(3)
given in (4.4.5).
Proposition 4.4.3: Given two vector fields X; and X; on R? X SO(3) as shown in
(4.4.5), the Lie bracket of X; and X, is given by

_OF
Oz

oG oG
g oA R]) (44.8)

[XI’X2](:E A)—(6F2 oz oz

Fz, [G1 X G2 +

for any point (z,4) € R2 x SO(3).
Proof: 1t is clear that the tangent curve of vector fileds X; in (4.4.5) at (z, A) can be
represented as

¢i(1) = (z + TF;(z), Aemp(r@;(z))).

Then, by (4.4.7),

_[Xl’X2 ](a:,A)= —('i‘—

7 (Fe(z+7F) - Fi(z + TF),
Tlr=0

T=

Aea:p(r@l)@z(z +71F) - Ae:cp(‘r@z)al(z + T7Fy))

o F: OF: 0G 0G
= (—5;2171 5 LR, A(G1Gy — GGy + [—6—25‘1 - 3—15’2] )
OF. JF 0G oG
= (“5;2‘171 Ep —1F, AlGy x Gy + ‘6—‘2‘F1 611 F2] )- | ]

Theorem 4.4.4: For system (4.4.4), there is an open set about (0,0,4) for any
A € 50(3) such that any point in this set can be reached from (0,0, A) by a piecewise
constant input (uy,us).

~ Proof: Let

Xa(z, 4) £ [ X1, X; |(z, A) = (F3(z), AGa(2)),
Xa(z, A) 2 [ X1, X3 (2, A) = (Fa(z), ADa(a)),

Xs(z,A) £ [ X5, X5 | (2, A) = (F5(z), AGs(2)),

where F; and G;, i = 1,2,3 are computed by using (4.4.7). It is easy to see that

F = (g) for i =3,4,5.

Using symbolic calculation (say, MACSYMA), one can check that in general,

det(G3,G4,Gs5)|z=(0,0) # 0.
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Since T(g,4)(R* X SO(3)) ~ R° and the vector fields shown in (4.4.4)’, which generate
the smallest involutive distribution, have special form, namely, Fi(z) = (1,0)T and
Fy(z) = (0,1)T, the above equations are sufficient to show that vector fields X; for
t = 1,...,5 are independent. Consequently, the control system given in (4.4.4) is
controllable by Chow’s theorem. ]

We now turn to the optimal control problem. Correspoﬁding to (P2) in Subsection

4.1.2, the goal here is to find u;(-) and us(:) to

1
minimize / (ud + ud)dt (4.4.9a)
0
subject to
.’il = U
ig = Us (449b)

A = A(ﬁlul + ﬁg'llq)

for given boundary conditions
z1(0) = z1(1) = 22(0) = z2(1) = 0, A(0) = Ag € SO(3), A(1) = A1 € SO(3). (4.4.9¢)

The necessary conditions for the above problem is given in the following theorem.
Theorem 4.4.5: If (z(-), A(-)) is an optimal trajectory with controls (uj(-),u3(-)) for
the optimal control problem given by (4.4.9), then there exist u(-) = (p1(-), g2(+)) and

A(+) on [0, 1] satisfying the ordinary differential equations

by = u] | jn = =AT (G + 52
Gy = i = _’\T(g_it”; + c‘;_ilzgug) (4.4.10a)
A= AQui + Qyup) A=A (Quu] + Qaul),
where 1
uy(z, A, p, A) = —5(/“ + A7) (4.4.10b)

1
’LL;(.’I:, A, b, ’\) = _5(#2 + /\TQQ)

with boundary conditions
z1(0) = z1(1) = z2(0) = z2(1) = 0, A(0) = Ap € SO(3), A(1) = A; € SO(3). (4.4.10c)
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Remark 4.4.6: Note that the above theorem does not depend on the expressions
of vectors ; and ; and the dimension of the shape space (now it is two) is not
an important factor as we will see in the following proofs. Therefore, the above
theorem is applicable to a class of mechanical systems with product principal bundle
(R™ x SO(3),R™,7,50(3)). |

In the following we use two methods to prove Theorem 4.4.5: perturbation method
(in variational principle) and geometric method.

Proof of Theorem 4.4.5 (Perturbation Method):

Applying Lagrange multiplier, the optimal control problem is equivalent to finding

control (u1(+),u2(+)) to minimize the cost function
1 ~ o~ -
J(ur(-), ua(:)) = / (u] +u3+p (w1 —&1) + pa(ua — £2) + (Aa, A(Q1us +Qaus ) — A))dt,
0

where (p1,p2) € T, R?(~ R?),and Ay € T;50(3), which are Lagrange multipliers,

J"17-’172)

(-,-) is the natural pairing between T*S0O(3) and TSO(3) defined in (4.2.8). Since
Ag € T350(3), it is of the form Ay = AN for some A € R3. Then the cost function

becomes
1
J(u1(°)7 u2()) = / H(xla z'la T2, 3527 Aa A7 U, U2 K1, U2, /\)dt’
0
where

f{ = 'u,% -+ UQ2 -|—-,u1(u1 - (L‘l) +u2(u2 - .’132) + (X, ﬁlul + ﬁg'dz) - (A/)\\,A) (4411)

which is a mapping from ®? x T*(R? x SO(3)) x T(R? x SO(3)) to R. Due to the
presence of the last term of (4.4.11) we cannot directly apply formulae for the adjoint
equations and optimal control as appearing in most text books. However, we still can
use the idea of perturbation in variational principle for our problem.

First, consider the perturbation of function (4.4.11). Let

Co = {(wa(t), u2(t)), ¢ € [0, 1]}

be the optimal curve in control space and
Cs = {(z1(2), z2(1), A(2)), t € [0, 1]}
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the corresponding optimal curve in configuration space R2 x SO(3). Let

Cop = {(u1(?) + €¢u, (), ua(t) + €8y, (1)), 2 € [0, 1]}

be the perturbed curve of C., where € € R, ¢,,(-) and ¢,,(-) are smooth curve in R!.

The corresponding perturbed curve of C; is presented by

Cap = {(&1(1) + €2, (1), 22() + 62, (1), Ae4V) 1 € [0,1]),

where ¢, () and ¢z,(-) are smooth curves in R! satisfying ¢,,(0) = ¢z, (1) = ¢,,(0) =
$5,(1) = 0 and @4(-) is a smooth curve in R3 satisfying #4(0) = $4(1) = 0. It should
be noted that, since ezp : T.G — G for any Lie group G is locally diffeomorphism,
Aesba ¢ § O(3) is qualified as a perturbation of A. Now the integrand of perturbed cost
function J, is
He =(u + €pu,)* + (ua + €6y, )
+ pa (g + €du, — &1 — €day) + 2 (2 + €pu, — F2 — €ds,)
+ AT (21 + 6oy, T2 + €62, ) (U1 + €y )
+ Qa(21 + €dz,, T2 + €dz, ) (U2 + €buy )]

— (AePaN, AePa 4 Adiit_(ee&))_

By letting the derivative of J, with respect to ¢ at ¢ = 0 be zero, i.e., %le:O =0, we

have

1 . .
0= A [2u1¢u1 + 2u2¢u2 + ﬂl(¢u1 - ¢:z:1) + ﬂ2(¢ug - ¢1‘2)

691 6&'21 892 692

AT((-——% Tor Bt + Qb + (G2 + G 2 Jus + Qa6u,)

- (Aqu/\, A) - (A/\,Aqf)A + A¢A)] t. (4.4.12)
The last two terms in the integrand of (4.4.12) can be re-arranged as

(ABaX, A)H(AR, AGA) + (AR, Ad,)

- gtr(AaAw + ARGTAT +373)
1 ~mm mm o~ AT d
= 5”(—¢A/\Q +APAQ =X Pa)+ dt(/\ da)

=-(A-AxQ): ¢A+—(/\ ba),
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where Q = (ATA)' = Qiuy + Qauy . Here we used a fact,

o~ /\

X=X =[Q,X]=0%x A\ (4.4.13)

Also re-arranging the other terms in (4.4.12), we get

0"/ [""—'(A ¢A+/J/1¢zl +“2¢1‘2)
+(2u1+u_1+/\ Q1)Pu,

+ (2ug + p2 + /\T92)¢u2

Q2 Qs
+ (p + }\T(_—l Ut + uz)d)xl

80 39
+(uz+AT(—l u + 5 2u2)¢x2

+(A=AxQ)-Paldt

Now, by the conditions on ¢,,¢,, and ¢4 at t = 0 and 1, the first term of above
integration is zero. In addition, we can choose functions u;(-),g2(-)} and A(-) on [0,1]
such that the coeflicients of ¢,,, ¢, and ¢4 to be zeros; this gives the last three
equations of (4.4.10a). Finally, since the system is controllable at (0,0, A) (cf. Theorem
4.4.4), the coefficients of ¢,, and ¢,, are also zero; this gives u} and u3 in (4.4.10b).

A
Proof of Theorem 4.4.5 (Geometric Method):

Here, we consider a slightly more general form of the problem (4.4.9). The optimal

control problem now is to determine control (uy(-), u2(+)) to

1
minimize/ (u? 4 ud)dt (4.4.14a)
0
subject to
&= fi(z)ur + fa(z)us
) R R (4.4.14b)
A= A(Ql(z)ul + QQ((L‘)’LLQ)
with boundary conditions
(z(0), A(0)) = (w0, 40) and (z(1),4(1)) = (z1,4,1), (4.4.14¢)
where (z(t), A(t)) €N x SOB),Vte[0,1], fi : R2 - R2, Q; : N2 - R3 for i =1,2

and u(-) = (u1(-),u2(-)) : [0,1] - R? is a piecewise smooth function. Applying the

Maximum Principle to this problem, we have the following result.
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Denoting by = = ((z, A), (1, A4)) = (2, ), (4, AN) = ((z, A), (4, 1)) a point in
T*(R? x SO(3)), we define pseudo-Hamiltonian, H : T*(R?* x SO(3)) x R? — R, by
A ~ ~
H(z,u) = < u,u>+ <y, fi(z)ur + falz)us > +{A4, A(Qi(z)ur + Qa(z)u2))
=< U, % > + < g, fi(@)ur + fo(@)uz > + < A, Qi(2)ur + Qaug > .
Define Hamiltonian

H(z) = rr‘:gkn2 H(z,u).

Since the control space is unbounded, one can find the functions u*(z) = (uf(z), u3(2))

on T*(R? x SO(3)) with
w(2) = ~3 (W) + AT (@)
: (4.4.15)
4i(2) = 5 (47 s (0) + N u(2))

such that

2
H(z) = H(z,u™(2)) = _% S b fi >+ < A Q> (4.4.16)
=1

From the Maximum Principle, we know that the existence of optimal control for problem
(4.4.14) implies that there is a solution to the following system on T*(%? x SO(3)):

3= Xg(2) (4.4.17)
with

7(2(0)) = (z0,40) and  7(z(1)) = (z1, 41),

where X is the Hamiltonian vector filed with respect to the Hamiltonian (4.4.16) and
7 : T*(R? x SO(3)) — R? x SO(3) is the canonical projection. Our goal now is to
determine the vector field Xy on T*(R? x $0(3)).

Recall that, for given n-dimensional smooth manifold @, its cotangent bundle 7*Q
has a canonical symplectic form Qg. Given a Hamiltonian H on T™(), the corresponding
Hamiltonian vector field Xy on T*(Q is defined by

Qo (Xy,Y)=H(Y) (4.4.18)
for any Y € Z(T*Q). The local expression of (4.4.18) can be given as (cf. Theorem

3.2.10 in [1])

QO(xva)((z7a7617 ﬁl)’(z7 aae?.»ﬁ?)) = (/62’61) - (31362) (4419)
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for (z,a) € T*Q and (e, i) € T(z,)T*@, i = 1,2. In our problem, Q = R x S0(3).
For the Hamiltonian given in (4.4.16), the corresponding Hamiltonian vector field Xp
in (4.4.17) will be determined by (4.4.18).

Let

y(t) = (o + v, Ae®), (u+ t6, A= (R + 1))
be an integral curve on T*(R? x SO(3)) at z = ((a:,A),(;z,AX)) for any v,¢ € R?,
a, 8 € R2. Then its tangent vector at z is given by
Y(2) = (2, 4), (4 A3), (v, 48), (6, A@X + B)-
Now the right-hand-side of (4.4.18) can be calculated as
H(Y) = o (y(1)

1d

2
- —Zﬁleo D (<t filz +tv) > + <A+ 18,0z + tv) >)!

i=1
13
=-3 zZ_;(< w fi >+ <A 0Q>)
_(< b, fi>+<u,Dfi-v>+<B,0>+<ADQ-v>)
=< ¢, frul + fous > + < B, Quuf + Qauz >
+ < p,(Dfiu; + Dfauy)-v > + < A, (DQu] + DQu3) - v >, (4.4.20)
where u} is given in (4.4.15) and
Dfi=(gk 2L) and DQi=(5¢ %4)
for 1=1,2 are 2 x 2 and 3 X 2 matrices, respectively.

On the other hand, let
Xu(2) = (2, A), (1, AN), (w, A7), (1, A(EX + 5)))

for some vectors w,n € R? and ¢,6 € R% which will be determined. Applying (4.4.19),

we have
Qo(2)(Xu,Y) = (6, A@A + B)), (w, AD) — ((n, A@X + 8)), (v, 48))
=< ¢,w > +HA@GI + B), AD)— < n,v > —(A(EX 4 3), A&)
< b= <> +-;—tr(BT?— %5 + 3T[¢,8])

1, o~ aa
=< p,w>—-<Nv>+ < P,e> —§tr([e, Al + 6)@). (4.4.21)

96



In order to have equation (4.4.18), we need to make (4.4.20) equal to (4.4.21). This leads

to following choice of w,¢,n and §.
w = fiug + faug

n=—(Dfiv} + D fru3)"p — (DQuf + DQ2u3)TA

(4.4.22)
€= Quy + Qauj
6=Ax (Qluf + qu;)
With above equations, the vector field Xy can be completely determined.
In summary, the differential equation (4.4.17) now has the following form.
(&= fi(z)ui + fa(z)u;
A = A (2)uf + Qa(2)u3)
] (4.4.23a)
pp= —(Dfi(z)ui + Dfa(2)u3) i — (DD (2)u] + Da(2)uz)" A
[ A = A x (u(2)u] + Qa(e)u3)
where )
uj = —5(#Tf1($) +ATQ(2))
. (4.4.23b)
uy = “5(#Tf2(1‘) + ATy (2)).
When f; = (1,0)T and f; = (0,1)7, (4.4.23) leads to (4.4.10). n

Remark 4.4.7: From the second proof of Theorem 4.4.5, we can see that the geometric
treatment of the optimal control problem allows us to define a Hamiltonian vector
field on the manifold 7*(R% x SO(3)). The solution of the optimal control problem
will correspond to a trajectory of this vector field. Of course, in general, it is almost
impossible to find explicit solutions although we did find it for planar system as shown in
Section 4.3. However, as we will show in the next section, identification of symmetries in
such a Hamiltonian system will allow a reduction in the order of the system by applying

symplectic or Poisson reduction theory which we reviewed in Chapter II. | ]

4.5 Symmetry and Reduction
Recall that the manifold P = T*(R2 x SO(3)), parameterized by z = (z, A, p, AX) ,

is symplectic. Hence, it is also Poisson (cf. Section 2.1). One can verify that the Poisson
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bracket of smooth functions F; and F; on P is given by

0F, 0F, 0F, O0R

oz Ou 0z op (4.5.1)
+ (DAFI,DA§F2> - (DAF2,DA/)‘~F1).

{F, F2}p(z) =

In the preceding section, we have shown that, for Hamiltonian

2
H(z)= -i z(,url- <A, Q ) (4.5.2)

i=1

the Hamiltonian vector field is

uj
u3
A(ﬁlu{ + §2u§)
Xg(z)= . " 4.5.3
(2) _,\T(%%:.u +§-§12u2) ( )
M (GBui + §2u3)

A X (Qu] + Qu3)
where
. 1 T
ui(2) = =5 (k1 + A7)

u3(2) = —3 (i + A7)
Consider the action of SO(3) on %2 x SO(3)
& : S0(3) x (B2 x SO(3)) — R x 50(3)
(B,(z,A))~ (z,BA)
and its cotangent lift on 7*(R? x SO(3))
37" : S0(3) x T*(R? x SO(3)) — T*(R* x 50(3))
(B, (z, A, u, AN)) — (z, BA, j1, BAX).
The quotient space P = T*(R2x SO(3))/S0(3) ~ R x R2 x ®3 can be coordinatized by
% = (2,1, \). Let ¥ be the canonical projection from P to P. We then have following

theorem:
Theorem 4.5.1: The Hamiltonian system (P,{, }p,Xg) has SO(3) symmetry and

is Poisson reducible. The Poisson reduced system is given by
7= AZVH, (4.5.4)

where A(Z) is the reduced Poisson structure given by

_ 0 I 0 '
A3 = (—I 0 g) (4.5.5)
0 0 A

98



for I being 2 X 2 identical matrix and 0°’s null matrices with suitable dimensions, and

H the reduced Hamiltonian given by

Ho% =H.
In addition, the Casimir functions for the Poisson reduced system are all real-valued
smooth functions of ||A||> which is a first integral for the system, i.e., for some constant
Cy,

NP =C (4.5.6)

Proof: It is obvious that the Hamiltonian (4.5.2) is invariant under the action
®T" since it does not have matrix A in its expression. This immediately implies

the SO(3)-symmetry for the system. Moreover, the reduced Hamiltonian H on

T*(R? x SO(3))/S0O(3) is simply
H(z,p,\) = H(z, A, p, AN). (4.5.7)

Let f; and f, be smooth functions on P = T*(R? x §0(3))/50(3). Let F; and
F, be lifed functions on P = T*(R* x SO(3)) such that

Fi(z, A, AN = fi(z, 1)), i=1,2.
We need to find the expression of {fi, f2}5 such that
{fl)f2}ﬁ(z’/-1'a’\)= {Fl, FQ}P((E,A,}L,AX)- (458)

where {F}, F>}p is given in (4.5.1). As we have seen in the second proof of Theorem

4.4.5, a tangent vector Y on T*(R? x SO(3)) at z = (z, 4, p, AX) has the form

| Y(2) = (v, A&, w, AE3 + ),

where v, w € 2 and «,8 € 3. An integral curve of Y at z can be written as
y(t) = (z + to, Aetg, i+ tw, Aeta(x + tB))

Then, by the definition of F;, we have

dF; - Y(z) = dilz Fi(z + tv, Aeta,u + tw, Aetg(x + tB))
t=0
d
== filz+to,pttw, A+ 15) (4.5.9)
t=0
_0fi ofi ofi
_az-'v-*-au.w.*_a/\
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On the other hand

dF; - Y(2) = ?—5 v+ (DAF;, Ac) + %‘7— w+(D 5 F:, A@ + B))
aF oF, a (4.5.10)
=5 vt 5= o cw+(DaF; — (D F))\ Aa) + (D, F,,A,B)
Comparing (4.5.9) with (4.5.10), we get
oF; 9f; OF; _0f;
5 = B2 T (4.5.11a)
of: 9fis
DsFi= A%,  DaFi=AZK. (4.5.11b)
From (4.5.1), (4.5.8) and (4.5.11), we have
B ] 8far O
(o 2335) = L5, a2 _ (4ZE5, 4R,
Oh O% 0% O
dz Op Oz Ou
0h 0%, 0% 2% _Oh Oh (45,12
B Nl TR el il

where I is the 2 X 2 identity matrix. Therefore, the matrix in (4.5.5) is reduced Poisson
structure. The proof of the rest of this theorem can be easily carried out. |

Since we are dealing with a trivial principal bundle here with structure group as the
symmetry group, after recognizing the coordinates for P one should be able to find the
Poisson reduced system by eliminating the third equation of (4.4.10a) and determine the
reduced Poisson structure from it. The first integral in (4.5.6) can be easily determined
from the last equation of (4.4.10a).

Following Remark 4.4.6, it is clear that this reduction theorem does not depend
on the forms of vectors @y and €Q,, either. It can also be extended to a system on a

principal bundle (™ x SO(3),R™,n, 50(3)).

4.6 Approximation and Further Reduction
Up to now, we have made no simplifications or approximations of the optimal

control problem. It is customary to make ad hoc approximations in the interest of
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ensuring analytic integrability or numerical solvability. However, in the process one can
easily destroy symmetries inherent to the problem. This is highly undesirable. On the
other hand, in many physical systems, simplification and/or approximation may bring
symmetries to the system. Our purpose in this section is to impose suitable assumptions,
explore further symmetry and reduce the order of the system again.

As having done in Section 4.3, we assume that the distances of the point masses
to 0-z axis, z;, are very small in comparison with the distances of them to 0-zy plan,

l,ie.,
lz:|/l << 1. (4.6.1)
By doing so, we ignore the higher order terms with (Zt)i(%2)? for 14 j > 2 in both

numerators and denominators of Q;(zy,z2) and Qz(z1,z2). Then the approximate

angular velocity (using the same notation) of the rigid body becomes

0 as
Q= ay 2'21 + 0 Ii?z (462)
brzy byzy
where
ay = —i—em[zl(?eml2 +I)
by = ie2m(2eml2 + I)(2emi® — mi® + )
A (4.6.3)
as = —Kemlzl(2eml2 + 1)
by = —-—g—e("m(Qeml2 + I)(2emi® — ml® + I,;)
for

A = I,(2emi® + I)(2emi® + L).

Remark 4.6.1: From (4.6.2), we see that if second point mass is fixed on 0-z axis, i.e.
zy = 0, an infinitesimal linear motion of first point mass along 0-z axis will generate
infinitesimal rotational motion of rigid body about 0-y axis only. However, if there is
an small offest of second masses, i.e. z5 # 0, an infinitesimal linear motion of first point
mass along 0-z axis will genera'te infinitesimal rotating motion of rigid body about both

0-y axis and 0-z axis. Therefore, the above assumption does make physical sense. i
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Inspired by the symmetric heavy top, we pose one more important assumption.

We assume that the rigid body is symmetric about 0-z axis which implies

Under this assumption Q takes the form:

0 a
Q= a (L‘1+ 0 Zi}g,

b$2 —b:z:1

where @ = a; and b= b;. The a,pproximation‘ of H is, for Z = (z,u, ),
Hia(3) = ~3((Bhszs + i + @)’ + (Bhas = i — aha)?)
Applying His to (4.5.4), we get corresponding Poisson dynamics
%= A(Z)VHy

or, explicitly,

(. bAsza + p1 + adg

I =

2
bAzzy — pa — aM
T9 = )
. b2/\§x1 - b/\gﬂz - ab/\1 Ag
H1 = 9
. b Aimo 4 bAgpq + ablaAs
H2 = 2

< Xl = — %(b2/\2)\3$§ + (b)\gp,l - ab)\§ + ab)\%)a:z + bzx\gz\gzi
+ (—-bAQ,LLg - abAl)\g).’L'l - (1,/\3[111 — G2A2A3)

: 1

As =§(b2/\1/\3m§ + (bAgp + abidg)zs + b* A Mgz

+ (=bArpg + abA} — abA})zy — adaps — a®A1As)

: abAiAzze + abla A3y — adapa + aAiiy
(A3 =- 2

(4.6.4)

(4.6.5)

(4.6.6)

(4.6.7)

Remark 4.6.2: A standard way to approximate Hamiltonian system is to keep some

terms of Taylor expansion of the Hamiltonian up to a certain order. Our approximation

above keeps Oth, 1st and part of 2nd order terms of Taylor expansion of H. Its physical

meaning is given in Remark 4.6.1.
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Next, we show that the above system admits a symmetry group and the order of the
reduced Hamiltonian system can be finally brought down to 4. Consider a one-parameter

group G, =~ §! with each element having the form:
. gr = BlockDiag(Rot(r), Rot(r), Rot*(—7)), (4.6.8)

where

cos(r) sin(t) 0

ot(t) = cos(r)  sin(r) an ot3(ty = | —sin(T) cos(tT
Rot(r) (——sin(r) cp.s(r)) d Rot*(r) ( O( ) 0( ) ?) )

Define an action ¥ of G, on P = T*(R? x S0(3))/50(3) ~ R by
U:G, xR =R
(4.6.9)
(7, (2, 18, A)) = (Rot(r)z, Rot(T), Rot>(—7)A).
We then have following striking fact.
Theorem 4.6.3: Following the rule of (4.6.9), the group G, acts on the Poisson

manifold P canonically, i.e., for any g, € G,

{fisfa}po ¥y, ={fio¥,  fao¥, )5 Vi€ C®(P),Vy: €G-

In addition, the approximate Hamiltonian H2 is Gr-invariant, i.e.

Hy3(2) = H12(¥g.(2)).

Proof: The first assertion is equivalent to

DY, (DR(DDY,, (DT = K(T,,(3).

This can be shown by a straightforward calculation. So is the second assertion. [ ]
Remark 4.6.4: From this theorem, one immediately concludes that G, is a symmetric
group of the system (4.6.7). |

It is clear that by Theorem 4.6.3 the conditions of Noether’s theorem introduced in
Section 2.1 are satisfied and, consequently, the associated momentum map is an integral
of the reduced system (4.6.7). From Section 2.1 we know that the momentum map

J: P — G (the dual of Lie algebra of G, ) of this action is defined by
(3(z),€) = J(&)(Z) (4.6.10)
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for all £ € G, and 2 € P, where J: G, — C°°(13) is a linear map such that
Xy = £5- (4.6.11)

Theorem 4.6.5: The constant momentum map for the system (P, {, } $) correspond-

ing to the action ¥ of G, on Pis

J(f)(}') = =Ty + Tap1 + Az, (4.6.12)

Proof:

Recall that the Hamiltonian vector field Xg,, on P is given by
X (f) = {f, Hu)p Vf € C*(P),
and from (4.6.11), we can determine the momentum map by
(£,J©}5 = &5(F) VE € G-

From (4.6.8) we know that £ € G, is of the form

0 -1 0
¢ = &' Block Diag (~01 (1))(_01 (1)) 1 0 o0},
0 0 0

where £’ is any constant in R which will be chosen as 1 later. It is easy to show that

the infinitesimal generator of the action (4.6.9) corresponding to  is given by

d
£5(2) = o

\I’(C(Bp(fT),E) = (332, —Zy, B2, —H1, —’\27 /\17 O)T,
=0

=

where ¥ is defined in (4.6.9). Then, for any function f on P,

- g 9f of of of | of of . 9Of
P = oy = g, T e~ FB, e T, Ty (4619
On the other hand, let J(&) be a function on M, then
{£, J(©}E) =df ()" A(Z)dJ (£)(3)
_9J(E) of . 0J(§) of 9J(§) of 9J() of
Opy 0z Opz Oz, 0zy Om O0zy Ous
aJ aJ 3} aJ aJ d
(% 6>(\€) ~ e a)(\f))axf (=% ax(f) A ag))a,\i
aJ oJ
+ 058\ S8 I (4.6.14)
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Comparing (4.6.13) and (4.6.14), we have following PDE

9J(&)
8#1 -
9 _ _
Opy
_9J) _
6321
aJ(£)
—"5;2— =i

WOy 09O _

D 2O
3«’(5) aJ(£)
T, T M o,
aJ(E) 3J(§)

2o 1o

=)\

One can check that function

J(E)(Z) = —z1p2 + Tap1 + A3

is a solution of the above PDE. Therefore, from Noether’s theorem, this function is a

constant along the motion of Xg,,, i.e.,
—ZTilg + Ty + A3 =Cs (4615)

for some constant Cy. |

Since the reduced system has G,-symmetry, by using standard Poisson reduction
procedure again, we can drop the system (4.6.7) to quotient space P = F’/GT o~
T*(R? x SO(3))/850(3)/S with projection ® : P — P. In the following, we will
find induced Hamiltonian H;,, induced Poisson structure A and reduced Hamiltonian
vector field Xz . on manifold P.

First, consider a change of coordinates

P PP
(4.6.16a)
7 = (21, T2, 41, 2, A1, A2, Az) = 21 = (71,72, 73,01, 02,03, A3)
given by relations
(21 = r1c08(6y),
A1 = r3c0s(0s),

zy = rysin(fy),

/\2 = —T3Sin(93), (4616b)

u1 = racos(fs),
Az = Az.

| 2 = rysin(6y),
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With this set of new coordinates, the Hamiltonian H;5 becomes

H’m('z“') 2;11(20,1‘2’!‘381.71,(03 - 92) + 2ab/\3r1r3cos(03 - 91)

(4.6.17)
+ 2bAgryrosin(fy — 0;) — a¥rd — 2 — b2A3r}).
And the corresponding dynamics X, is given by
(. argsin(63 — 6,1) — rocos(fy — 01)
1T = )
b — arzcos(03 — 61) + rosin(6y — 61) — bAsry
1= 27‘1
. abAsr3cos(f3 — 0y) — b*Airicos(62 — 61)
Ty = )
. 1
Oy = — — ab)\37°3sin 03 - 02 + b2/\2rlsin 92 had 01 - bAg'I‘z)
) b= 5 (85 — 62) + b Nirysin(6s — b) o)

; al3racos(f3 — 62) — abA3rysin(f; — 1)
3 —_
2

by = — %(GA3T28iTl(03 — 0y) + (abA3ry — abrird)cos(83 — 61)
3

— brirarasin(8s — 61) + (6*Aari — a®A3)rs)

. ararzcos(fs — 02) — abAgrirzsin(f; — 61)
\ A3 = — > .

Observing that the Hamiltonian H'y2 and the right-hand-side of differential equation
(4.8.18) depend on relative values of 6y, 6, and #3 only, we can reduce the order of this

system as follows. Let
f21 = 62 — 61

932 = 93 - 92.

By using z = (71,72, 73,021,032, A3) to parameterize P, the induced Hamiltonian on P

is given by

H14(3) :%(2&1}/\37‘17‘3005(032 + 021) + 2arzrasin(9s2) (4.6.19)

+ 2bA371708in(021) — a¥r: — 2 — b2 222,
3T 37"
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The corresponding induced dynamics Xpg , on P is given by

; _0.7'3.97:71,(932 + 921) - rgcbs(921)
1 —
2
i ab)\3r3cos(032) - b2 /\grlcos(gn)
7 = —
2
Fo = abA%rlsin(Gg,g + 921) - a/\3r2c03(932)
8= 2
921 = (a7'21‘3603(932 + 921) — ab/\3r1rasin(932)
27‘17‘2
) + (r% —b? A%r%)sinwgl)) (4.6.20)
932 =3 ((abrl'rgrg - ab/\grlrg)cos(am + 641)
ToT3
+ (abAar? — adsrd)sin(6s2)
+ (brlrg + b2/\§r1)r35in(021)
+ ((a2 - b)>\3 — b2A3'I‘%)7‘27‘3)
5. = abAsrirssin(fs + 631) — aryrscos(fsz)
U 2

Moreover, the first integrals in (4.5.6) and (4.6.15) now take form:
4+ A= (4.6.21)

and

r1T281n(621) + A3 = Ca. (4.6.22)

Therefore, as we claimed before, the final reduced system with the above two integrals
is a four-dimensional Hamiltonian system.
Next, we show that the final reduced system (4.6.20) with (4.6.21) and (4.6.22) is

also Poisson. In other words, one should be able to find a Poisson structure, A, on P

such that equations (4.6.20) can be expressed as
% - A(Z’)Vﬁ]z(z)

To this end, we first look at the Poisson tensor A under the new coordinates ' =
(r1,72,73,01,02,05,X3) in P. Since ' = 9(3) for 7 = (21,22, 41, iz, M, Az, A3), the

Poisson bracket under new coordinates will satisfy
{F,BRYE) = {fi, i} o v~ ("), (4.6.23)
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where F; = fioy~! for f; € C®°(P), i = 1,2. The right-hand-side of (4.6.23) gives

b 0
iy o @)= B 1 amiEn

‘2‘¢‘1(z’)
It is easy to show that

O fi T oOF;
0z ( ) IZ— vz 31

Therefore, the Poisson tensor under new coordinates is given by

RE) = (GOl KO EN G oy

From (4.6.16), one can show that

cos(61) sin(61) 0 0 0 0 0
0 0 cos(6y) sin(6;) 0 0 0
0 0 0 0 cos(83) —sin(f3) 0
AN LG 0 0 0 0
9% 'z=y~1(z") 0 0 _sinr(:g) co.i(:g) 0 0 0
0 0 0 0 _ sinr(393) _ co.:(fg,) 0
0 0 0 0 0 0 1
Then
0 cos(fy —81) O 0 _S_i_“("rzT—"ll 00
— cos(fy — 64) 0 0 _211(_9:;:9_1)_ 0 0 0
0 0 0 0 0 23
N@ED = 0 sin(fa—61) 0 cos(62-61) ¢ ¢
sin(fa—61) 16 0 _cos(92—91) Tld'Q 00
T2 \ T1T2
0 - 0 0 01
0 0 0 0 0 -10

which depends on 8 — 6; only.

(4.6.24)

We now ready to determine the Poisson tensor on P. Let fi and fo be smooth

functions on P which is parameterized by z = (r1, 73,73, 021, 032, A3). Let fl and fz be

lifed functions on P such that at lifted point #~1(2) = 7 = (r1,72,73,01,02,03,A3) in

P
73 =f3, i=1,2

The Poisson bracket of ]71 and ]72 at any point 7 in P is given by Poisson structure

shown in (4.6.23). We need to find the expression of {A, f_g};;/G such that

{flyf‘l}ﬁ/af oT = {};7 f?}ﬁ (46'25)
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It is easy to show that

t

Vo jo Do
@[3 [

(%)

b

—ococoo o

® Qo
o
OO OO O
cCoOoOO0COoO~O
cCOoO OO O
|
p—t

o Do Y
2,828

Q)
>
w

or shortly, 5
af
%

i

of
0z’

Then, immediately, from (4.6.23) and (4.6.24), we have

6f 1 d fa
{.fi> jb }13/(; ( ) - A( ) 9z ’
where - _
A(Z) =ZT(A o7~ 1)(2)=
0 603(921) 0 - ﬂ%z&l
—008(921) 0 0 sin(f21)
0 0 d
= Sin(GQI) _si1(1)(0m) 0 O
_ .sin2( 621) 61 0 _cos(8z)
07‘2 0 _ %ﬁ. TiT2

Therefore, (4.6.20) can be expressed by.

for ze€ P.
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Appendix 4.A:

This appendix gives complete expression of Q1(z1,22) and Qa(z1,22) in (4.4.1)

with ¥, = 0 and ¥, = 7/2.

Q,

where

1 w11 1 Wa1
= ——— | wig Qy = 5—77—< | w22
det(Iiock) w13 det(Ilock) Was

det(Tioer) =(€ — 1)€* (26 — m?ziz}

Wil =

Wiz =

w1z =

+ (e — 1)@m?(2¢mg”® — emg® + eI, — I,)z)

+ (€ = 1)é¥(2¢ = 1)mz1a}

+ 2m? (4<—:3mq2 —108mg® + demq® — 2el, + I,
+ I, — 2ely + Iy + E1, — 2, + I)z}73

+ em(4e3m?q? — 26 m2q* + 2 I,mg* - 2¢l,mq?
+ 2¢* Iqu2 - 261qu2 + 23 I,mqg?

—elp,mg* + elyl, — I, + el 1y, — Izly)azg

+ (e - 1)ém? (28 mg® - emq® + el — 1)z}

+ em(4e3 mqt — 28 miq* + 22 I,mq* — 2el,mq*
+ 262[qu2 - ermq2 + 2¢¢ I, mq?

—2el,mg? + el I, — LI, + el I, — I.I,)z}

+ L(2emq® + I)(2emg® + 1)

— *(2e — 1)m3qz123

- <s3m2q(2€mq2 -mg* - I, + I)z122

— (€ = 1)é(2¢ — 1)mPqz} + (26 — 1)m2qzizl
+ Emiq(aelmg® — 2em?¢ + el — I, + 2el; — I;)z3
+ €mq(2¢8mg® — emq® + el — I;)z}

— emlI,q(2emq® + I;)

— ¢*(2e — 1)m®z2z}
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— (e - 1)ém?(2emg® — mg® + I,)z)

— ém? (2 mg? — emg® + el — I)zizs

+ m(2emg® + I)(2emg® — mg* + L)z,
wy =€ (2¢ — 1)mPgziz]

+ Em? (28 mg? — emg® + €I, - 1)z}

— (€ = 1)(2e — 1)m¢z]

+ 62m2q(462mq2 —2emq® + eI, — I, + 2¢l, — Iy)mﬁ

— emI,q(2emg® + 1)
wey = — €4(2¢ — 1)m?qziz,

- m*q(2emq® - mq® — I, + I;)2122
wa3 =€4(2€ - l)maz?zg

+ Em?(2¢8mg? — emg® + eIy — I)z123

+ (e — 1)ém?*(2emg® — mg* + I;)z3

- &m(2emq® + I,)(2emg® - mq® + I;)z;.
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CHAPTER V

CHAPLYGIN DYNAMICS AND
LAGRANGIAN REDUCTION

In this chapter, based on the intrinsic form of Lagrange-d’Alembert principle
formulated in Chapter II, we study constrained Lagrangian dynamics with symmetry
on principal fiber bundles with connections. We show that, under certain constraints
which are of the nonholonomic variety, there is a family of splittings of the Lagrangian
velocity phase space. Each splitting gives a Lagrangian dynamics on the horizontal
distribution given by a connection. If the nonholonomic constraint is given by the
horizontal distribution of the connection itself, our result leads to Koiller’s formula
for non-Abelian Chaplygin systems [20]. If the mechanical connection is used and the
exterior force leaves the momentum map invariant, our result leads to (non-Abelian)
Lagrangian reduction due to Marsden and Scheurle [27].

In Section 5.1, as a motivation, we first consider a simple class of systems, namely,
Lagrangian systems with Abelian symmetry and affine constraints. An \important
observation from studying such systems is that, when a constrained system possesses
symmetry, the dynamics of the system can be described by a reduced system of lower

dimension and without constraints. In Sections 5.2 and 5.3, we show that for a system
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with non-Abelian symmetry such a reduction can also be obtained by going through a
two-step procedure. In Section 5.4, we demonstrate Lagrangian reduction by using the
formulas generated in Sections 5.2 and 5.3. The first section of Chapter IV provides some

of the mathematical background (principal bundle, connection, etc.) for this chapter.

5.1 Abelian Chaplygin Systems with Affine Constraints
Let @ = R™ = R™ X R™™™ be the n-dimensional configuration space of the system
under study, and ¢ = (¢1,¢2) a point in @, for ¢ € ®™ and ¢; € R*~™. Let function

L :TQ — R be the Lagrangian of the system with the property:

L(g,v) = L((¢1,0), (v1,%2)) = L(qu,v1,2), (5.1.1)

where v = (v1,v2) € T,Q, for v1 € Ty, R™ and vy € Ty, R*™™. The constraint on the
system is given by the zero level set of m linearly independent functions f:7¢ — R™

which is of the form

f(g,v) = B(q1)v1 — vz + b(q1), (5.1.2)

where B : R™ — L(R™,R""™) and b: R™ — R"*~™ are smooth mappings. In addition,

the exterior force or control is given by a mapping F : TQ — T*@ which is of the form

F(g,v) = (Fi(q1,v1,v2), Fa(q1, v1,v2)), (5.1.3)

for Fi(q1,v1,v2) € T, R™ and Fy(q1,v1,v2) € Ty, ®™™™. Here, as well as in the rest
of this chapter, defining the exterior force on 7'Q is equivalent to specifying a feedback
control.

A general method to determine a motion of the system in the above setting is
to solve the (2n + m)-dimensional differential equations given in (2.2.33) or (2.2.34).
However, by observing the properties of the Lagrangian, the constraints and the exterior
force given in (5.1.1)-(5.1.3), one can show that the problem can be reduced to solving
a lower dimensional system of differential equations without constraints. Classically, .
a system as defined above is called a Chaplygin system provided that b(¢;) = 0 [32].

It has been shown that for such systems, the dynamic equations can be reduced
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to unconstrained equations on the space R®™ parametrized by ¢; with a modified
Lagrangian and a modified exterior force. For the proof of this assertion and examples of
physical systems, see [32]. From a geometric point of view, it is clear that the conditions
for a system to be a Chaplygin system is that the Lagfangian, the exterior force and the

constraints are invariant under the action of the Abelian group R"~™, namely,

R x Q - @
(5.1.4)
(2,(q1,92)) = (@1, 02 + 2)-

Because of this, we refer to a classical Chaplygin system as an Abelian Chaplygin system
with linear constraints and the system given by (5.1.1)-(5.1.3) as an Abelian Chaplygin
system with affine constraints. Next, we show how to derive reduced dynamic equations
on TR™ parametrized by (qi1,v1) from the original system with affine constraints.
Consider an Abelian Chaplygin system with affine constraints given by (5.1.1)-
(5.1.3). From Lagrange-d’Alembert principle formulated in (2.2.33), the dynamics is
given by
(%DUL(q,v) - DqL(q,v)) cu= F(q,v) - u (5.1.5a)

with (¢,v) = (a1, %2), (v1,v2)) € TQ satisfying

f(g,v) = B(q1)v1 —v2 +b(q1) = 0 (5.1.5b)
and u = (u1,uz) € T,Q satisfying

D,f(q,v) -u= B(q1)us — ug = 0. (5.1.5¢)

Using (5.1.5¢) and (5.1.1), Equation (5.1.5a) can be re-written as

d , d
(E;DML(Q, v) - Dq1 L((], 1))) s Uy + E't'(D‘UzL(q’ ’U)) ) B((h )ul (516)
= ﬁ((h’vl) s UL,
where
Fg1,v1) = Fi(q1,v1,92)ls, + B(g1)* Fa(q1,v1,92) s (5.1.7)
A

a‘nd (')“UQ = (')|U2=B(91)’Ul+b(91)‘ Let

L(q1,91) £ L(gr, v, Bla)v + b(@))- (5.1.8)
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Then, it is easy to check the following equalities

Dy, L(q1,v1,v2) " w1 = Dv,z(lh,vl) 1 — Doy, L(q1,v1,v2)|v, - (B(q1)u1)
Dg, L(q1,v1,v2) - w1 =D, L(q1,v1) - w1 — Dy, L(q1,v1,2)]w; - (Dg, B(a1)u1)v1)

= Dy, L(q1, v1, v2)lv, - (Dgy B(@1) 1),
where Dy, B(q1) : ™ — L(R™,R""™) and Dg,b(q1) : R™ — R"™™ are the Fréchet
derivatives of B(q,) and b(g;), respectively. Substituting from the above two equations

in (5.1.6), one gets

(%Dvlz(%’ v1)=Dg, L(q1,v1)) - ma
=Dy, Llv, - [(Dg, B(q1)v1)u1 ~ (Dyg, B(g1)u1)v1]
~ Dy Llu, - Dgyb(q1)ur + Flgi,v1) - ua
=(Dy,Llv,, dB(q1)(v1,w))
~ (D, Llys Dgb(gr)ua) + Flar, v1) - ua,
where dB(q;)(v1,u1) = (Dg, B(q1)v1)ur — (Dg, B(q1)u1)vi € R*~™. Writing things in

terms of components, we have, for B(¢g1) = (B"j,i =1,---,n—m;j = 1,---,m),

vy = (vk,k=1,---,m) and vy = (ul,i=1,---,m),

i N~<~[0B* 9B
(dB(ql)('vl,ul)) = Z Z (_—T— - _-k—> ’U{cull
dq dqq

fori=1,---,n—m.

We summarize the above result in the following theorem.
Theorem 5.1.1: Ifa curve {q(t) = (q1(¢), ¢2(¢)),t > 0} in @ = R™ xR*~™ is a motion
of the constrained Lagrangian system with the Lagrangian L, the constraints and the
exterior force given in (5.1.1)-(5.1.3), respectively, then the curve {gi(t),t > 0} is the
motion of the unconstrained Lagrangian system in £™ with Lagrangian L given by
(5.1.8) and the exterior forces given by (Dy,L|v,, dB(q1)(v1,)), —(Lq,6(¢1))" Doy, Lo,

and f’(ql, v1) as in (5.1.7), i.e., it satisfies the reduced dynamics

d ~ ~ ~
aDvlL(quvl) sy — DqlL(Qh?Jl) ! =F(Q1, 'vl) c Uy — (Dnglu29 Dqlb(QI)’Ud) (5.1.9)
+ (szL|v2?dB(Q1)(v17u1)>
for any uq € R™. ]
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Remarks 5.1.2:

(1)

(2)

(3)

(4)

If {q:(t),t > 0} is known, the curve {g2(¢),¢ > 0} can be determined uniquely

from constraint equations by quadrature, i.e.,

0(t) = / B(gs (r))is () + blan(r))dr.

It is obvious that the curve {(q1(%), ¢2(%)),t > 0} satisfies the original differential
equation (5.1.5). Therefore, the condition (5.1.9) in Theorem 5.1.1 is also necessary.
The results of Theorem 5.1.1 are applicable to a system with Lagrangian being not
necessarily of the form, kinetic energy minus potential energy.

If the configuration space ¢ in Theorem 5.1.1 is replaced by B x G where B is
an m-dimensional manifold and G is an (n — m)-dimensional Abelian symmetry
group of the system (i.e., ®™ is replaced by B and R™™™ is replaced by G ), then
it is easy to see that Theorem 5.1.1 is still valid and Equation (5.1.9) is just the
local form of the dynamics on B.

An important observation here is that, as in the case of a Chaplygin system with
linear constraints, when the system satisfies conditions (5.1.1)-(5.1.3), or symmetry,
one can also simplify the problem of solving constrained dynamic equations given
in (5.1.5) to the problem of solving the unconstrained dynamic equations given in
(5.1.9) of lower dimension. As we shall see in the following sections, for systems

with non-Abelian symmetry, such a simplification is also possible, but in two steps.

Technically, the above derivation looks very elementary and quite the same as the

one for a system with linear constraints. However, by applying this result to a system

with

a constant momentum map or a conservation law, we will discover the reduced

dynamics originally derived by Routh [3,38], who obtained such equations by defining a

new function, called the Routhian, through application of the so-called cyclic coordinates.

It is our re-formulation of Routh’s problem below via the nonholonomic constraints that

motivated us to study more general systems, namely, non-Abelian Lagrangian reduction,

as worked out in the later sections.
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Consider a simple mechanical system with (Abelian) symmetry,
(Q@=R",K,V,G=R""T). (5.1.10)
Here, the Riemannian metric is written as

K(@)(o,0) = o M(gyw = (070" (@) Hla) (o),

where v1,w; € R™ and vy, w2 € R*™™, M;;(q1) are the submatrices of the symmetric

matrix M of suitable dimensions, and the potential function satisfies V' = V(¢;). The

action of G on @ is given by (5.1.4). Then, the Lagrangian of the system is
L(q1,v1,v2) =%’UTM(Q1 Jo—Vig)

(5.1.11)

1 1
=§111TM11(<11)1)1 + vlTM12(<Z1)v2 + §v2TM22(q1)v2 -V(iq)-

The Lie algebra of G = R*™™ is G = R™ ™. It is easy to check that, if £ € G,
the infinitesimal generator of the action @ in (5.1.4) with respect to & is simply
€o(q) = (0,&), where 0 is the null vector in ™. Then, by (2.1.27), the momentum

map with respect to the tangent action of & is

3(g,v) = Mi3(q1)v1 + Maz(q1)vs. (5.1.12)

Assume that the exterior force or control leaves g = J(q,v) invariant. Since p is
fixed, the problem now is to determine the dynamics under the constraints given by the
constant momentum map. Note that the Lagrangian given in (5.1.11) is G-invariant

and J(q,v) = p can be re-arranged as
vy = —~Mz (@) MG(q)v + Mz (1)

= B(q1)v1 + b(q1),

(5.1.13)

where B(q) 2 — M3 (q1)ME(q1) and b(g1) £ M5 (q1)u, which is also G-invariant.
Therefore, we have an Abelian Chaplygin system with affine constraints. From the
definition of L in (5.1.8), after a simple calculation, we have

~ 1 - 1 -

L(q1,m) ='2'v1T(M11 - Mg M3 M3 )v + 5MTM221# -Viq)

1 —~ 1
=§1’1TM771 + §#TMz_zlli = Via),
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where M £ My — My My; M,

D‘UQL(q17 v, vZ)I’Uz = W,

and

(DU2L|U27 D‘hb(ql)ul) = (/J" (DQ1M2—21(q1)u1)ﬂ> = Dq1(/”'TM2—él(ql)/‘) s Ut

From the above calculations, we see that if we define a function, referred to as the

reduced Lagrangian, as

~ Al —~ 1 _
Lu(q1,m) = EvlTM(QI)'Ul - (5uTM221(q1 )+ Via)), (5.1.14)

equation (5.1.9) specializes to

d - - _
(E:'DvlLu.(thl) - DqlLu(thl)) ~up = (@, dB(q1)(v1,u1)) + F(q1,v1) - u1. (5.1.15)

Since the infinitesimal generator of the action in (5.1.4) corresponding to £ € G
is €g(q) = (0,&), the submatrix I(q1) 2 Ms3(q1) is the locked inertia temsor (cf.
Subsection 4.1.2). Then,

al -
V, = §MT1I Ya)u+Via)

is known as the amended potential (cf. [41]). In addition, from a geometric point of view,
we claim that —dB(q;) is, in fact, the curvature form, €2, of the mechanical connection
on the principal bundle (R*,R™,R"~™) and the first term in (5.1.15) is known as the

p-component of the curvature form evaluated at (uq,v;), i.e.,
Q@) (ur, 1) 2 (1, Uar)(us, v0) = ( ~dB(ar)(wa, 1)), (5.1.16)
Recall that the connection form w(q) of the mechanical connection on () is given as
(w(q),v) = 1(q)""I(q, v),

where T is locked inertia tensor and J is the momentum map. From the above discussion

and (5.1.12) we have

(w(g),v) = M3z (q1) M5 (g1)v1 + va.
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This implies that the connection form is
w(q) = My (@) M (01)da + dgs
= —B(q1)dq1 + dgs.

Since the symmetry group here is Abelian, by the definition of curvature form (cf.
Subsection 4.1.1), the above equation justifies our claim.

In summary, we state the result as a theorem.
Theorem 5.1.3: If a curve {g(t) = (q1(t),¢2(t)),t 2 0} in @ = R™ X R*™™ is a
motion of the simple mechanical system with symmetry given in (5.1.10) together with
exterior force (5.1.3) which leaves the momentum map given in (5.1.12) invariant, i.e.,

J(q,q) = 1, then the curve {q:(t),t > 0} in R™ satisfies Euler-Lagrange equation

d _ ~ - -
(G2 Euln o) = Dol )) -1 = Rula)n,00) + Flan ) -, (5107

where Q, is given in (5.1.16) and F(qi,v;) given in (5.1.7) for B therein given in
(5.1.13). . N
Remarks 5.1.4:

(1) If Equation (5.1.15) or (5.1.17) is written in components, one gets the reduced
dynamic equations due to Routh [38].

(2) Theorem 5.1.3 can be extended to a system on any n-dimensional smooth manifold
@, and (n — m)-dimensional Abelian symmetry group G. With this extension,
Equation (5.1.17) gives the dynamics or special vector fields (cf. Chapter II), in
local coordinates, on T(Q/G). Then, the Theorem (5.1.3) is known as Lagrangian
reduction for the system admitting Abelian symmetry, which is also shown in [3]. A
natural question that follows is to work out the reduction theorem for the systems

with non-Abelian symmetry. We will answer this question in Section 4. |

5.2 Dynamics on Horizontal Distribution

Consider a simple mechanical system with symmetry given by a four-tuple
(@, K,V,G), (5.2.1)
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where @ is the n-dimensional configuration space; G is a Lie group of dimension p
acting on @) on the left freely and properly. This action is denoted by @ given in (2.1.1);
K is a Riemannian metric and G acts on @ by isometries; V' is a G -invariant potential

function (cf. Subsection 2.1.4). The Lagrangian of this system is given by
1
Lg,5) = 5 K(0)(ve,0) = V(0). (522)
In addition, we let the configuration space @ be a principal G'-bundle:
p=(Q,B,r,G), (5.2.3)

where G' is a p'-dimensional closed subgroup of G, B = Q/G' is the m(= n — p')
dimensional base space and 7« : Q — B is the bundle projection. From Section 4.1,
we know that on this bundle one can choose a connection, which defines a horizontal
distribution on T'Q (cf. Definition 4.1.3), and associated to such a connection, there is
a unique connection form, w € w!(Q;G"). We now consider a class of constraints which
relate to the connection form as follows.

Constraint Hypothesis 5.2.1: We assume that the motion of the system, (g(-), v4(-)),

is constrained to a 2n — p’ dimensional subspace of T'¢) defined by

S £ {(g,v) € TQ | w(g)(vg) = £() }, (5.2.4)

where the mapping £ : @ — G’ is smooth and also G'-equivariant, i.e., (g ¢q) =
Ady(q),Vg € G'. |
Remark 5.2.2: Since G’ is a p’-dimensional vector space and w(g)(v,) is linear in v,
the above assumption can be viewed as giving p’ affine constraints on 7'Q) . In addition,
if £(q) = 0, the subspace § is just the horizontal distribution. |

With the above setting, according to equations (2.2.33) derived from Lagrange-

d’Alembert principle, the dynamics of the system is given by the following equations,

d
-(EDQ L(q,vq) - ug — D1L(q,vq) - g = F - uq (5.2.5a)

for (g,v,) satisfying
w(g)(vq) = £(q) (5.2.5b)
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and u, belonging to the horizontal subspace at ¢, H, C T,Q, i.e.,

w(q)(ug) = 0. (5.2.5¢)

Here, F' is an exterior force satisfying the following hypothesis:

Exterior Force Hypothesis 5.2.3: We assume that an exterior force is a mapping
F:TQ ->T*Q
such that V(q,v,),
F(®4(9),Tq®-vy) =T, ®,- F(q,vy) Vge€G, (5.2.6)

i.e., it is G -equivariant. ]

Let g(-) = {q(t);t > 0} be the solution of (5.2.5) with initial condition ¢(0) = qq,
and z(-) = {z(t) = 7(g(t)),t > 0} the projection of ¢(-) on B. Our final goal is to
explicitly formulate the projected dynamics on T'B. Since we assume that the structure
group G’ is non-Abelian in general, such a formulation is no longer a straightforward
calculation as we have done in the previous section. Our strategy now is to determine
the unconstrained dynamics on the horizontal subspace for the given connection, and
then, project it to the base space B.

Given a connection on @Q, let r(-) = {r(t),t > 0} be the horizontal lift of z(-)
to @ for given 7(0) = ro,7(ro) = z(0) = 7(go). From Theorem 4.1.7, we know that
this lifted curve is unique. The question we will address is that if the left-hand-side
of Euler-Lagrange equation (5.2.5a) is restricted to the horizontal curve 7(-), what the

dynamic equation should be, i.e., we will answer the following question:

%DQI/(T, vr) - Uy — Dy L(7,v,) - up =1, (5.2.7)

where u, € H, (the horizontal subspace at r) and v, = #(t).

Remark 5.2.4: Equivalently, one can ask what is the form of equation (5.2.5a) if Ug

is split into horizontal and vertical components. |
From the uniqueness of horizontal lift, we know that for a given ¢(-) in Q and the

horizontal lift r(-), there exists a ﬁnique curve g(-) = {g(t),t > 0} € G' such that
N N
q(t) = 8(g(1), (1)) = B4(r) = g -
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Then,

nlt) = d() = Ty v+ | B(o(r)g™(0),0(0) - (1)
=Tr®g - v + [TyRg-14()]a(9)
=T @, - v, + [n()]o(q), (5.2.8)

where 7(t) = TgR,-19(t) € G’ for G' the Lie algebra of G'. Equation (5.2.8) presents
the splitting of a tangent vector on @ according to a choice of connection. Evaluate
w(q) on both side of (5.2.8). Since v, is horizontal, by Constraint Hypothesis 5.2.1 we
have

1(t) = w(g)(vg) = £(9)- (5.2.9)
Therefore,

0y(t) = T2, - v, + [E(0)]a(0)- (5.2.10)

Since the connection form has equivariant property, we have

vp = Ty® -1 - vg — Ty® -1 - [€(0)]0(q)
=Ty ®g-1 - v — [Adg-1€(D)]@(9™" - @)
= T, -1 - vg — [E()]q(7). (5.2.11)

For simplicity, we sometimes abbreviate [£(:)]g(+) by £g(+). But when it is necessary,
e.g. operating on derivatives or displaying the final results, we will use the complete
notation.

In the following derivations, we will frequently use Equations (5.2.6), (5.2.10),
(5.2.11), the G-invariant property of the Riemannian metric and potential energy, and
the chain rule in differentiation. The derivations will be carried out in local coordinates,
but in an intrinsic way.

Substituting v, from (5.2.11) into the first term of left-hand-side of (5.2.7), we

have

d d .
—d—thL(r, Vp) Uy = Eh (r)(vrs up)

d d
= SEE)(Ty g - vgyur) = TE(T2, - [6(@)ale),ur)

2 A-B. (5.2.12)
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Here, A can be further expanded as
d
A= EZK(g ) (vg, Tr®yg - ur)

= g’; _tK(q(T))(”q(T)vTrq)g(t) “ur) + 3_7_ _tK(‘I(t))(”q(t), T ® y(ry * Ur)

2 Ap + A, (5.2.13)

Let ug = T,i) g - 4y which certainly satisfies condition (5.2.5c). Then, from (5.2.5a), we

have
1
Ax =§(DqK(‘1) “q)(0g5 %) = DV(q) - uq + F(q,vq) - g

= 2Dy (g 7) - Telgur (T (vr + £0(1), Try(vr + Ea(r)))

—(DgV(g-r) Trdgur) + F(g-r,Ty®,(vr + [€(r)]@(r))) - T gur

d 1

=7 _0[51&’(9 (1 + €up))(Tr® 4 (vr + (7)), Tr® y(vr + E0(T)))

- V(g . (7' + eur))] + T:(I)QF(T’ vr + [£(T)]Q(T)) : TT@QUT

= 2D (r) - ur)(oe,02) = DLV (1) - e + F(r, v+ [E(P]a(r)) - s

1 . .
+ 5(DrK(r) - ur)(§a(r); €a(r)) + (DrK(r) - ur)(éa(r), vr)- (5.2.14)
Note that, in the above derivation, we used the Exterior Force Hypothesis 5.2.3. The
first two terms in (5.2.14) is in fact the second term in (5.2.6), that is, Dy L(r,vr) - ur.

We now consider A; in (5.2.13). Note that

d dd
ETT@g(t) S Uy = Ti de E=0‘I)(g(t)a7"+ €ur)

=8l 2 e @0+ ew)

e=0 T=t
= |l et (r+ cw)
d
=T, - de e=0[€(7')]Q(7' + eur)
= T,8, - (DrEo(r) - ur). (5.2.15)

Therefore,
d
Ay = I((Q)(vqa 'C'l_tTr@g(t) . ur)
= K(g-r)(T, 9, - (vr + &q(7)), Tr Py - (Drbq(r) - ur))

= K(r)(vr, Do (7) - ur) + K(7)(E@(r), Dréo(r) - ur). (5.2.16)
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Finally, B in (5.2.12) can be re-arranged as follows:

B =% K(a0)(€a())lo(a(t). usco)
=(D,K(q) - v4)(€o(q), uq) + K(q)([De6(q) - v4l@(9), uq)
+ K(D)(Dgka(@) - vgrug) + K()(Ea(), S8 ur)

2 By + By + Bs + B,
where

By =(DyK(g-7) - Tr®g(vr + E@(r))(Tr®eéq(r), Tr@4ur)

_ Klg+ (r+ <lon + EQ(r))(T-246a(r), Trtgur)

=]

de

P EzoK(r + (v, + Eo(r))(€a(T), ur)

=(DrK(r) - (vr + &(7)))(€0(r), ur),

By =K (4)(( 5

_Of(‘l + evg)l(q), TrPgur)

€

—K(g- (%

e=0

=K(g- TS| &+ d(ur +Ea(rla(r), Ty

=K(r)([D:£(r) - (vr + Eo(r)]o(T), ur),

By =K(a)( -

_0[5((1)]Q(‘1 + €vq), Ug)

=K(g- r)(g; ,
=K(r)(D:€q(r) - (vr + £q(r))s ur),

By =K (g - r)(Tr®46q(r), Tr®, D Lo (r) - ur)

=K(r)(Dr€q(r) - ur, £q(r))-

From (5.2.12)-(5.2.21), we get the answer to the question in (5.2.7) as follows:
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£(g - (r+ e(vr + &(m))]e(g - ), Tr @ gur)

[€(g - el - (7 + e(vr + £a(7)))), T gur)

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)



fi—D2L(7'a v'r) cUp — DIL("'v 'vr) * Uy :F(T’ Ur + [E(T)]Q(T)) *Ur

dt
+ (DK () - ur)(Ea(r), o)
+ (D,K(r)- w)(€q(r),v7)
+ K(r)(vr, Do€g(r) - ur)
~ (DeK(r) - (3 + Eq(r))(Ea(r), ur)
~ K()(IDAE() - (o + E(r)a(r), ue)
— K(r)(Drbq(r) - (vr + €q(7)), ur). (5.2.22)

Next, we will make (5.2.22) more compact by defining new functions. Let

V() £ V() + 3K ()

1 (5.2.23)
= V(r) + 5 (L(r)é(r), &(r),
where the mapping I(r): G — G* has been defined in (4.1.9). Then
£ rY-u,. = T): Up 1‘ rBA\T) Up r T
D,V ( ) - DTV( ) + 2(D I(( ) )(fQ( )7§Q( )) (5.2_24)

+ K (r)([Dré(r) - urlo(r), §@(r) + K(r)(Drba(r) - ur, Eo(r))-

Define a new Lagrangian on horizontal space H,,
L4(r, ) & SK(r)(or,0) = VE(r)
and a function on 7Q:
=(r)(ur, or) £ K(r)(vr, [DrE(r) - urlo(r)).
Then (5.2.22) becomes,

d_DZLg("" v'r) s U — Dng(T7 'U'r) s Up :F(’I‘, vy + [f(’l‘)]Q(T‘)) < Uy

dt
+ (D K(r) - ur)(€Q(r), vr + E@(T))
+ K(r)(Drkq(r) - ur, vr + Eo(r))
£ KD - ular), ve + Ea(r))
— (DK(r)- (v + E(r))(Eq(r), ur)
— K(r)(Dkq(r) - (v, + Eq(r), ur)
— K(r)([DS£(r) - (or + E(r)la(r), ur)

- E(r)(ur, vr)
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=F(r, v, + [£(M)]q(r)) - ur + (DK (r)([E(M]@(r))] - wr) - (v + E(7))
— (DK (r)([EMa(r)] - (vr + E@(7))) - ur — E(r)(2r, vr)
= F(r, 00 + [6(7)]q(r)) - r + dug(r) (ttr, 07 + () = Z()(ur, vy,
where we(r) & K*(r)([€(r)]q(r)) is a Teal-valued one-form on Q and K’ :TQ — T*Q

is the usual Legendre transform. In the above derivation, we used the following fact in

local coordinates,
do(r)(X,Y) = (Da(r)- X) Y = (Da(r)-Y)- X Vre@

for X,Y € £(Q) and any one-form a on Q.

Up to now, we have proved the following theorem.
Theorem 5.2.5: If ¢(-) is a solution of the constrained dynamics (5.2.5), then, for
given choice of connection on principal G’-bundle (5.2.3), any horizontal lift, (-), of

g(-)’s projection satisfies the unconstrained equation

d

?d_tD2L€(T’ Vp)* Up — D1L(r,v,) - ur =F(r,vr + [£(7)]0(7)) - ur

+ dwe(r)(ur, vr) + dwe(r)(ur, [£(7)]0())

- Z(r)(ur, vr)

(5.2.25)
for any u, € Hy C T,Q , where
L¥(r,00) = 3K ()0, 02) = VE(7)
VE(r) = V() + 5 KOETa(r) Ela(r)
= V() + 5 (L)Er), €0,
we(r) = B (r)(IE)a(r)
2(r)(ur ) = K(7)(0r, [DE(r) - wrla (7). ’
Remarks 5.2.6:
(1) From the derivation of duwy, the force
Fyyro(r,v7) = duwe(r)( -, ©r) (5.2.26)

has the property of a gyroscopic force.
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(2) One can show that Equation (5.2.22) can be written in an alternative form without

resort to the function V¢, that is,

& DaL(r,v0) - 4y = DyL(r, ) -, =F(r, v+ [E(P)]a(r)) - ur

dt
+ 3 DI, (7)) - e
+ d&)g(’f‘)(ur, ’U:,-) - E(T)(?l,,,., vp + EQ(T))

We are not going to use this form since, when we consider Lagrangian reduction
later, Equation (5.2.25) will give us a straightforward answer.

(3) Once a horizontal curve is determined by solving the unconstrained equation
(5.2.25) for an initial condition r(0), the solution for the original constrained

equations (5.2.5) can be determined by first solving the differential equation

9(t) = 9(2) - £(r(2))

for g(0) satisfying ¢(0) = g(0)-r(0), and then setting

q(t) = g(t) - r(2).

(4) The equilibria of the system are determined by the solution of algebraic equations

D1VE(r) — dwe(r)( -, [E(M)]o(r)) = 0. B

5.3 Non-Abelian Chaplygin Systems

In this section, we show how to drop the unconstrained dynamics on horizontal
bundle given in (5.2.25) down to the base space for a given principal fiber bundle. To
get explicit expressions, we will consider the formulation on product bundles. Since a
principal fiber bundle is locally trivial, the following results will be true locally in general.
Also, for simplicity, we will assume the symmetry group in (5.2.1) is the same as the
structure group of the principal bundle (5.2.3) (i.e., G' = G).

Let @ = B X G be the configuration space parametrized by ¢ = (z,h) for z € B
and h € G. Then, the tangent space is TyQ = T B X ThG. The tangent vector at any
point g in @) is given by

Vg =[vs, h-(]azn (5.3.1)
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for some { € G, where h - ( 2 TeLp(. Consider the principal bundle (B x G, B,G),
where G acts on Q = B X G on the left as shown in Subsection 4.1.2, and a connection
given by connection form w € w!(Q;G). One can show that, on this bundle there exists

an unique G-valued one-form, &, on B such that, at each point ¢ = (z,h) in @,

w(q) - vy = Adn(¢ + &(z) - vs), (5.3.2)

where v, is given in (5.3.1) [16]. We refer to & as the pull-down connection form,
which is also the usual notion of local connection form if a non-trivial principal bundle is
considered. The proof of (5.3.2) can be verified by letting v, be horizontal and comparing
(5.3.2) with (4.1.6). With the above connection, the tangent vector v, on @ at ¢ = (z,h)

has its horizontal and vertical splitting,
vg = Ver(vg) + Hor(v,),
where
Ver(vg) = [Ada(¢ +&(2) - va))l@(@) = [0, A ((+&(z) - vs) | (5.3:3)

and

Hor(vg) = vg — Ver(vg) = [vg, —h - (0(z) - v5)]- (5.3.4)

Indeed, (5.3.3) can be carried out directly as follows,
Ver(vg) =[Adn({ + &(2) - vz)lo(9)

=g_€ _ ®(ezp{eAda(C + () o)} (31 1)

:g—g [z, exp{eAdy(C + () - vg)} - h]
=0

=g—€- _0[:1:, h - exp{e({ + &(z) - vz)}]

=[0, - ((+&(z) - vz)].
Now we express each object in Theorem 5.2.5 based on the above setting. First,

we introduce the induced Riemannian metric and potential function on base space B in
accordance with the restriction of Riemannian metric and potential function of a simple
mechanical system with symmetry on the horizontal subspace. Let H, be the horizontal

subspace of T,.QQ at r = (z,h) with respect to the above connection. If

vy = [Ug, —h - (B(z)-v.)] € H, and w,=[wg—h (&(z) w)] € Hy,
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then

K(r)(vr,wr) =K(z, h)([vg, —h - (&(2) - v3)], [wg, —h - (&(z) - wy)])
=K (z, e)([vz, —0() - vz, [wz, —&(z) - w5])
£ ff'(m)(vz, Wg ), (5.3.5)

where e is the identity element in G, and the G-invariance of K has been used. Also,

since the potential function on @ is G-invariant,
V(r) = V(z,h) = V(z,¢) £ V(2). (5.3.6)

The constraint in Constraint Hypothesis 5.2.1 based on the connection given in

(5.3.2) now has the following expression
w(ma h) *Ue,h) = Adh(c + a(m) . va:) = 6(37, h) = Adh&(z, e)

or equivalently,

E(z) £ &(z,€) = C + B(z) - vs. (5.3.7)

Then, for any ¢ = (z,h) € Q,

[E(@lo(a) = [Adné(2)la(a) = [0,k E(2)), (5.3.8)
and then, the second term of V¢ in (5.2.23) at ¢ becomes

5 K(@)([@)]e(@), E@)la0) =3 K (2, )10, b+ =)L, 10, b §a))
=3 K(z,)(0. =), [0.E)
=3 ({(2)f(=), &a)),
where T(z) 2 I(z,e).

Using the above newly defined objects on base space B, the function L¢ in

Theorem 5.2.4 can be expressed as,

L(r,00) = 5 B(@)(02, ) = (P(2) + 5 @2, Ee)))

” (5.3.9)
2 Lg(x, Vg),

for any point r = (z,h) € Q and v, = [v;,—h-(&(z)-v;)] € H, Cc T,Q.
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We are now ready to drop the dynamics given in (5.2.25) down to the base space B.
Let ¢(-) = (z(-), h(-)) be the solution of (5.2.5) with initial condition ¢(0) = (o, ho) for
2o € B and hy € G, where z(-) is naturally the projection of ¢(-). Let r(-) = (z(-),9(-))
be the horizontal lift of z(-) with initial condition r(0) = (z(0),g(0)), where g(-) is

determined by solving differential equation

#(8) = —g(t) - @(2() - va(1)) (5.3.10)

for initial condition ¢(0). Then from (5.3.4),

on(t) = [0a(t), —g(8) - @((D)) - valt))]. (5.3.11)
Remark 5.3.1: From connection theory, we know that, given a connection on a
principal fiber bundle p = (Q, B, 7, G), there exists an unique horizontal lift mapping

at each point ¢ in @, denoted by

H(q) : Trq) — T,Q.

For trivial bundle case, this mapping has been given explicitly in (5.3.4), i.e.,

v = H(z,9) - ve = [v2(2), —g(t) - (&(2(1)) - v2(2))]-
We will use this notation in the next section. |

Let u, be any tangent vector at r(t) in H,, which can be represented by

U = (g, —g(t) - (&(2(1)) - ug)]

for some u; € T, B. Now, the first term on the left-hand-side of (5.2.25) is
d

%Dg LE(r, Up)lUp = %K(r(t})(vr(t), Ur)

=d%- _tK(w(T)’g(T))([vx(T), ~g(7) - (@((7))va(r))]; [uas —g(2) - (&(2(1))uz)])

=%K($(t), 9(®))([v2(t), —g(2) - (B(2(t))vz(1))], [uz, —g(2) - (&(2(2))uz)])

- K(2,9)([vs =0 - (B(&)02)], Hle, —9(2) - @(a(0)u:)
= K(a(0),e)([v=(1), ~H(a(0))va(D)] [, ~F(2(0)) ]

- K(z, 9)([vz, =g - (&(2)v2)], [0, g - (6(2)v2)(E(2)uz) — g - ((D(2)vz)us)])
- L R(@)(we(2), )

- K(z,e)([vz, —®(z)vz], [0, (&(z) v )(@(z)ug) — (Dzo(z)vz)uz]). (5.3.12)
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Remark 5.3.2: In the above derivation we used the following convention,

ad

4
ax

g e . e/\"lz, V’I)1,7]2 € g7 Vg € G. | |

e=0 A=0

The second term in the left-hand-side of (5.2.25) is

DyL(r, ) - ur =3 (DrK(r) - ) (0r,20) = DV (r) - e

~ 5 DeKEER) [EPr) - ury (5:3.13)

where

(DK (r)ur)(vr,vy) = % K(r + eur)(vp,vy)

e=0

_OK(x + eug, ge'ez(’"')“’ Y[vz, —g(&(2)v2)], [va, —g9(D(z)vs)])

Te €=OI\’($ + €ug, e)([vg, _ee;(z‘)u, (@(z)vs)], [ves _ee;(x)u, (@(2)vz)])

=(D K (2)uz)(vs, v5) — 2K (2, €)([ve, —@(2)vz), [0, —(Doio(z)uz)vs))

+ 2K (z, e)([vz, —0(z)vg), [0, —(B(2)usz )(&(z)vs)]), (5.3.14)

de

D.V(r) u, = V(r+ eu,)
0

€=

V(z + euy, ge'e‘:(”)“‘)

e=0

!

o Rl Bl

V(z + eug,e€)

e=0

=D, V(z) - ug (5.3.15)

and

D(K(r)([E(r)]a(r), [€()]o(r))) - ur
== E(rI(Erola(re): Erdla(re)lr=rten,

e=0

=S| K(z+eus, gem D )([0, ge~ ) £z + eug )], [0, ge AP £z +eug)])

€=0

de
:Z—e K(z + eug, e)([O,Z(z + euy)l, [O,g(g; + eug)])
d

e=0

(i(z + eur)g(z + eux),g(z + eug))

e=0

=((D:1(2) - uz)E(2), &(=)) + 2(W(2)&(=), (D2£(2)) - ua)- (5.3.16)
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Therefore, from (5.3.12)-(5.3.16), the left-hand-side of (5.2.25) is

d
EDQLE(T, vp) - up — D1 LE(7,0r) - Uy

— K(z, e)([vz, —&(2)vg], [0, (Dold(2)uz vz — (Do(2)vz)ua
+ (B(2)vs ) (@(z)us) — (G(2)us)(@(2)0s)])
=-3—ED2Z'£(:I:, vz) s Uy — Dlze(x9 Uz) *Ug

-~ I((-’B, 6)([’01-, "‘:J(x)sz [07 ﬁ(m)(u,, UZ‘)D

=%D2Zf(x,ux) tty = DyEE(2,02) - s — T(2) (Vg s V), (5.3.17)
where
§(2) (s v) 2 (Ds(2 Y1) - vs — (Ds(@)0z) - Uz
+ (@B(2) - va)(@(2) - us) — (B(2) - u)(B(2) - v5)
=di5(2) (g, vz) = [B(2) - g, B(2) - V2 ] (5.3.18)
and
T(2)(vg, ey v2) 2 K(z,€)([v5 ~F() - v, [0, A=) (uz, 2)]). (5.3.19)

Among the newly defined objects above, [(z)(vz, ug, ve) is a (3, 0)-tensor on B, which
is skew-symmetric in last two vectors. And, Q is a G-valued two-form on B, which
plays the role of local curvature form. Indeed, we have following result.
Proposition 5.3.3: Let # = (Z,§) be any point in § for any point Z € Band g€ G,
and

ur = (ug, =g - (@(Z) - uz)) and vz = (vz,—7 - (W(T)- vz))
be horizontal tangent vectors with respect to the connection given in (5.3.2). Let © be

the corresponding curvature form of the connection. Then we have

[Q(F) (us, ve)@(F) = (0,7 - Q(7)(us, v2))- (5.3.20)

Proof: Recall that, if U a;ld V' are horizontal vector fields on Q,

[QUa)(U(q), V())le(@) = ~Ver((U,V 1(a))- (5.3.21)
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We start from computing [ U,V ]. Let u(z) and v(z) be vector fields on B extended
respectively from u; and vz, i.e., u(Z) = uz and v(Z) = vz. Then we define two

horizoﬁtal vector fields on Q to be, for any r = (z,9) € @,
U(r) = [u(z), g+ (B(2)- u(@))] and  V(r) = [o(z),—g - @(2) -0(&))].  (5.3.22)
Let ¢y(t,7) and ¢v(t,r) be the tangent curves of U and V at r, respectively, i.e.,
ou(t,r) = (z + tu(z),g - e't;(x)“(x)) and ov(t,7) = (z + tv(z),9- e"t;(”)"(‘”))
Then, using Lemma 4.4.1,

V(u(t,r)) - Uldv(t,r)

t=0

[U,VI(r)=

4
dt

[v(z + tu(z)), —ge~ " U5 (z + tu(z))v(z + tu(z))]

t=0

- 3|, e+ 1o@)) —ge™ DYOG(z 4 to(z))u(z + to(z))]
=[Dv(z)u(z), g(&(z)u(2))(@(z)v(z)) - g(DS(z)u(z))v(z) — g&(z)(Dv(z)u(z))]
~ [Du(z)v(z), 9(&@(z)v(z))(@(z)u(z)) + g(Di(z)v(z))u(z) + go(z)(Du(z)v(2))]
=[Do(z)u(z) — Du(z)v(z), —ga(z)(Dv(z)u(z) — Du(z)v(z))]
+ (0, g((@(z)u(z))(@(2)o(2)) — (&(z)v(2))(@(z)u(z))
+ (D&(z)v(z))u(z) - (Do(z)u(e))v(z))]
=[Dv(z)u(z) - Du(z)v(c), —g - &(2)(Dv(e)u(z) — Du(z)v(2))]
+[0,9 - ([&(z)u(z),&(z)v(z) ] - di(z)(u(z), v())]- (5.3.23)
It is clear that in (5.3.23) the first term is the horizontal part of [ U,V ]J(r) and the
second term is vertical part of [ U,V ](r) which, at (Z,§), is identical to the minus of
right-hand-side of (5.3.20). N
Remark 5.3.4: If one assumes G acts on @ to the right in the definition of principal

fiber bundle, Q is of the form
O(2)(tz, v5) = dB5(2) (g, v5) + [ 5(2)(2a),3(z)(va) ],

which is called local curvature form in many textbooks in physics and mathematics. §
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We now start to drop the right-hand-side of (5.2.25) down to the base space B.

The first term there can written as, using Exterior Force Hypothesis 5.2.3,

F(r,v + [£(r)]a(7)) - ur =F((2,9), [v2, 9(E(2) = B(<) - v5]) - [u, —g(2) - ]

= F((3, €),[05,E() = 3(2) - va]) - [z, ~(2) - 1]

2 F(z,v;) - ug. (5.3.24)
We give the drop of the second and third terms on the right-hand-side of (5.2.25)

in the following Lemmas.

Lemma 5.3.5: Let ¥ =(Z,g) be any point in @ for any point Z € B and § € G, and
Ur = ('U:i», —g . (G(E) . ’U,i-)) and Vg = ('U:',}, —'g . (&VJ(Q_I) . ’Uj;))

be horizontal tangent vectors at 7 with respect to the connection given in (5.3.2). Then,

duwe(F)(ur, vr) =doe(2)(uz, v2) + (L(2)E(Z), UZ)(uz, vz)), (5.3.25)
where W¢ is a one-form on B defined by, for any z € B and w, € T, B,

Be(2)(ws) £ K(z,e)([0, &), [ws, ~3(2)w.]). (5.3.26)

Proof:
As we have done in the proof of Proposition 5.3.3,let U and V be the vector fields
extended from tangent vectors u; and vs, respectively, such that at any point = in @,

their expressions are given in (5.3.22). From (4.1.3),

dwe(r)(U(r), V(r)) = U(n)we(r)V(r)] = V(r)lwe(r)U(r)] = we(r)[ U,V 1(r)). (5.3.27)
From the definition of w in Theorem 5.2.5,
we(r)V(r) = K(r)([§(r)]e(r), V(7))
= K(2,9)((0,9 - &()), [v(2), =g - (5(=) - v(2))))-
Then, letting ¢y (e, r) = [z +eu(z), ge=*(=)%(=)] be the tangent curve of U at r = (g, g),

we have

UV = G| weGuler)Vidu(en)

eEx
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K (2 + eu(x), ge~ =) ([0, ge= U5 + eu(a))],

€=0

i

il

[v(z + eu(®)), —ge" D5 (z + eu(z))v(= + eu(z))))

K(z + eu(), e)((0, (= + eu(=))],

e=0

| =

[v(z + eu(z)), —&(z + eu(z))v(z + eu(z))])
= D(@(=) - u(z)) - v(z)
+ K(2,e)([0, &), [Do(2) - u(), ~3(z)(Dov(z) - uw(@))).  (5.3.28)
Following the same way, we get
V(r)wg(r)U(r)] = D@(=) - v(2)) - u(z)
+ K(z,e)([0, &), [Du(z) - v(z), ~&(z)(Du(z) - v(z))]).  (5.3.29)

The Lie bracket of vector field U and V has been computed in (5.3.23). Then

we(r)([ U,V 1(r))
= K(z,e)([0,&=)];
[Dv(z) - u(z) — Du(z) - v(z), —&(z)(Dv(z) - u(z) — Du(z) - v(2))])
+ K(z,e)([0,&)], [0, Az)(u(z), v(z))))- (5.3.30)

Substituting (5.3.28)-(5.3.30) inte (5.3.27), we get

dwe(r)(U(r), V(7)) = de()(u(z), v(2)) + (L(2)E(2), Az)(u(z), v(2)))-

Evaluating the above equation at r = 7, we get (5.3.25). |

Lemma5.3.6: Let 7 and ur bé defined as in Lemma 5.3.5. Let [£(7)]o(7) = [0,5-&(Z)].
Then,
duog(7) (ur [E(P(7) = (DL(E) - u2)E(2), &(&)) + ([(2)E(%), Dok(E) - us) .
+{ L(2)E(@),[5(2)uz, £(2) ] )- (5.3.31)

Proof:
Let U be the same vector field given in (5.3.22). Let £g be the vector field extended

from EQ(:E) such that, at any point r in @,
Eo(r) = [AdsE(2))o(z, 9) = [0, Ady€(2) - g]-

135



Again, from (4.1.3), we have

dwe(r)(U(r), &q(r)) = U(r)[we(r)éq(r)]~Eq(r)lwe(r)U(r)]—we(r)(U, Eq1(r)). (5.3.32)

Let

du(e,r) = o+ eu(z), g™ @] and g (e,7) = [z, eABEE) ]

be tangent curves of vector fields of U and &g at (z,g), respectively. Then following
the same procedure as we have done in the proof of previous Lemma, we have

U(r)lwe(r)(€q(r))] = % owe(¢u(€, r))(€a(dv)(er))

€=

K (o + eu(x), ge=“@=D)([0, ge AU E( + eu(a))],

e=0

& &

(0, AdyE(&)ge= (= (=)))

il

& &

K+ ela), e)([0, &z + eu(z))],
[0, e=(=)u=) g1 44 E(5)ge™ =)
= (DI(2)&(x), Ady-1(2)) + ((2) DE(=) - u(e), Adg-15&(2))
+ (I(2)€(=), (B(2)u(2)) Ady-1,€(2) — Ady-1,E(Z)(@(2)u(2)))  (5.3.33)

and

Ea(nleeU()] = -

_OW£(¢5Q (6,7))U(dgq(€,7))

d - € (= € 18T € _1~a‘: ~
= L) K(e, e )(0, 448 g0, [u(e), —e 44T g )u(e))
e=0
=0. (5.3.34)

Finally, using Lemma 4.4.2, we have

[U.éol(r)= 2

OEQ(¢U(€, 7)) = U(dgq(6,7))-

€=

But
d

de

- d
_Galou()=¢| _

= [0, g Ad,—1;E(2)(@(z)u(2))]

[0, Ad,-1£(F)ge = “(@)u(=)]
1]

€

and

d
de

d
=0U(</>§Q(€)) = 7 o

= [0, ~gAd-1,€(2)((2)u(2))].

[u(z), —eAdE® g(G(2)u(2))]

€
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Therefore
[U.ée]=0. (5.3.35)
Substituting (5.3.33)-(5.3.35) into (5.3.32) and evaluating it at 7 = 7, one gets (5.3.31).

||
Finally the last term in (5.2.25) can be given as follows. First, at any point

r= (z’g) in Q,

d
D) v = G| _tlr+enr)
— d—. g . e-E:;(x)us . g(z + GUx) . eE;(I)‘u.,g—l
de|,_q

= g (—(@(2)uz)&(z) + E(z)(@(2)us) + Doklz) - uz) - g°

=g- ([ g(x)":’(z)ux ] + ng(x) . uz) : 9—1
which is a G-valued vector. Then

[DE(r) - urlo(r) = [0,9 - ([€(z),&(z)us ] + DE(2) - us)].
Therefore, '
Z(r)(ur, vr) = K(2,9)([vz, —9(@(2)v2)), [0, 9 - ([£(2), B(z)ug ] + Dob(2) - us)])
K(z, e)([vz, —(@(2)v5)], [0,[£(2), &(2)uz | + Dok(z) - us))

Z(z)(ug, vz). (5.3.36)

I

e

By collecting (5.3.17), (5.3.24), (5.3.25), (5.3.31) and (5.3.36), Theorem 5.2.5 leads

to the following result.

Theorem 5.3.7: If ¢(-) = (z(-),¢(-)) is a solution of constrained dynamic equations
(5.2.5) on principal fiber bundle (B x G, B,w,G) with connection in (5.3.2), then its

projection z(-) in B satisfies unconstraint equation
%Dzzf(z,v,) ‘g — D1 LE(2,vz) - up =F (2, vz) - up + dg(z) (g, vz)
+ (@) (Ve 1, 02) + (L(2)E(2), W) (2, v2))
+((D1(2) - us)&(x), E(<))
+ (K(2)&(z), Do(z) - uz)
+ ([(2)&(2), [3(2)us, E(2) 1)

~ Z(2) Uz, vz) (5.3.37)
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for any u, € T, B, where

E¥(2,02) £ 5 R(2)(0m,22) ~ (7(2) + 1 ({2)E(@), o))
0(2)(u, v2) = d(2) (e, vs) = [3(2) - v, 3(z) - v ]
T(2)(v: e, v2) £ K(2,€)([v2 ~5(2) - v, [0, U2 (s, v0)]),
2(2)(e02) £ K (2, €)([ve ~(@(2)02)], [0,[E(2), B(2)us ] + Dok(z) - u2])
and F and & are defined in (5.3.24) and (5.3.26), respectively. B

Remarks 5.3.8:

(1) If we define a function

2

L(z,vg) f’(a:)(vx,v?) - V(x),

[

by considering (5.3.16), the dynamic equation (5.3.37) can be replace by

d T T b5 o~
ED;;L(II), V) * Uz — D1L(%, v5) - up =F(z,v;5) - up + dog(z)(ug, vs)

+ () (02, g, v2) + (L(2)E(), Hz)(uz, v2))
+ 3 {(DJ(z) - u)E(@), Ee)
+ (L(2)&(2),[&(2)uz, &(z) ])
- Z(z)(ug, v5)- (5.3.38)

2) If E(:z:) = 0, Equation (5.3.37) becomes

d  ~ -~ _
EZDzL(x, Vz) Uz — D1L(z,v) - up = F(z,v;) - up + D(2)(vg, Uz, vz), (5.3.39)

which is the equation derived in [20].

(3) Aslong as z(-) is determined from (5.3.37) or (5.3.38), its horizontal lift 7(-) can
be found from solving (5.3.10), and the solution of original constrained equation
(5.2.5) can be found by using the formula in Remark 5.2.6(3). This procedure is
called reconstruction in [26].

(4) If one assumes G acts on @ on the right in the definition of principal fiber bundle
and simple mechanical system with symmetry and the mapping € : Q@ — G’ defined

in Constraint Hypothesis 5.2.1 is G -equivariant with respect to right action, i.e.,
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€(q-g) = Ady-1£(q), then to obtain the reduced dynamic equation, one only needs
to change signs in front of all the Lie brackets in (5.3.37) or (5.3.38).
(5) One can check that if G is Abelian, (5.3.37) or (5.3.38) specializes to (5.1.9).

5.4 Lagrangian Reduction

In Section 5.2, we formulated constrained Lagrangian dynamics on horizontal
distribution for any principal connection, by which the nonholonomic constraints are
constructed (cf. Constraint Hypothesis 5.2.1). Here, we consider a special connection,
namely, mechanical connection which has been considered in Section 4.1.

Recall that, given a simple mechanical system with symmetry (Q, K,V,G) with
its Lagrangian given in (5.2.2), the lift of the G-action to T'Q induces an equivariant

momentum map J : TQ — G* given by

(3(4,99),C) = K(q)(vg:Ca(9)), V¢ EG. (5.4.1)

We assume that the exterior force acting on the system satisfies (5.2.6) and leaves the
momentum map invariant, i.e., the motion of the system ¢(-) = {q(¢),t > 0} satisfies
J(q,q) = p for a constant p € G*. If y is a regular value of J, the interesting question is
what the dynamics on subspace & = J™1(u) C T'Q is. In Section 5.1, we have considered
the same problem by treating the conserved momentum map as the constraints of the
system with Abelian symmetry. Here, although the symmetry group is non-Abelian in
general, we will follow the same idea as we had in Section 5.1, but using the geometric
method we developed in Sections 5.2 and 5.3.

Consider a principal fiber bundle given by

p=(Q, B,m Gy, (5.4.2)

where G, = {g € G | Ad}_.p = p}, for constant p € G* given above, is an isotropy
group. Let G, be the Lie algebra of G,. As we have shown in Section 4.1.2, on this

bundle, the mechanical connection is given by a G,-valued one-form:
w(g): ToQ — G,

B (5.4.3)
vg = I, (9)I(g,vq), Vg €Q,
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where I,(q) : G, — G, is called p-locked inertia tensor, which is defined in the same
way as we did in (4.1.9), but restricted on G,. Now the subspace § = J~1(u) can be

represented as

S ={(g,v) € TQ | w(q)(v) =7 (9 }, (5.4.4)

which is of the same form as (5.2.4) in Constraint Hypothesis 5.2.1. Indeed, for any

geG,, 1
' qp=1"(g-QAd}pu = I (g- ) Ad;I (g, v,)

= ]I;l(g : Q)J(qu’g (g, ”q)) =w(g-9)(Ty2,4 - vy)
= Adgo(g)(vy) = Ady I (g}

With the above setting, formulation of dynamic equation on J~!(x) can be given
by (5.2.5) with &(q) = ]I;l(q)p. Following Theorem 5.2.4, we can also write down the
dynamics of the constrained system on the horizontal distribution. Since the connection
now is a special one, Equation (5.2.25) can be simplified. We first show the following
results.

Proposition 5.4.1: In Theorem 5.2.5,if £(q) = ]I;l(q)u,
(1) the function V¢(q) is the amended potential function V,(g);
(2) the one-form we is the p-component of mechanical connection form;

(3) For mechanical connection,
E(r)(-)=0.

Proof: (1) Indeed,

Vi) =V(@) + 5 K@) (@rle(@), 17 (@)kle(@)
=V(9) + 3 (Lle) I7 (@ T ()
=V(g) + 5 (T3 (@)
=Vu(9):

(2) The p-component of a k-form o € @*(Q;G,) is a real-valued k-form on @,

denoted by aﬁ, and is defined by
(af(@),vq) = (1> a*(q)(vg))- (5.4.5)
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From the definition of mechanical connection given in (5.4.3), we have

(p,w(q)(vg)) = {1, L, () (g, vq))
= (I (@)1, I (g, v9))
= K(9)((X; (9)1)q(9), vq)

= (K" (¢)((T; (0)1)@(9)), vg)-

Therefore, from (5.4.5), the p-component of the mechanical connection form is

wu(g) = K ()L (9)le(9))- (5.4.6)

From the condition of this Proposition and the expression of w¢, (2) is proved.

(3) Since horizontal-vertical splitting of mechanical connection is an orthogonal
splitting with respect to the Riemannian metric K, the claim follows from the definition
of Z(r)(+,-)- |

After identifying w¢ as p-component of mechanical connection form w,, we have
the following properties.

Proposition 5.4.2:

(1) For a fixed point ¢ € @ and any vector field Y € Z(Q),

dw(D([E(D]e(9), Y () = 0; (5.4.7)

(2) dw, is the p-component of the curvature form, Q,, of the mechanical connection.

Proof:

(1) First, we extend the tangent vector [£(7)]q(7) to a fundamental vector field (at 7)

E—Q(Q) , where £ = £(@). Then we have formula

dw,(€o,Y) = &g - wu(Y) =Y -wu(éo) —wull€e, Y ])
= (1 g - w(Y)) — (1, Y -w(ée)) — (1w €, Y D)- (5.4.8)
The second term in (5.4.8) is always zero since w(€g) = € is a constant in Gu. If Y

is horizontal, so is [ £g,Y ] (cf. [33]). This implies w(Y) = w([£q,Y ]) = 0, and

consequently dw“(fQ,Y) = 0. If Y is fundamental, say Y = (g for some { € G, the
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first term of (5.4.8) is zero since w(Y') is a constant. In addition,

(06, Y 1)) = —(m,w([£:C1Q))

d

= —a t_Q(/"Ade-‘FP(tOC)
d

=7 _ (Ad:zp(tf)'u’O
d

= —E t=0<'u"C) -

This completes the proof of (1).
(2) From the structural equation in (4.1.4), we have
Qu(X,Y) = (1, QX, V)
= (s [w(X),w(Y)]) + (4, dw(X,Y)).

But {(u,[w(X),w(Y)]) =0 by the proof of (1) above. This proves the result. |

Now using the above observations, we can restate the Theorem 5.2.5 for the systems
with mechanical connection as follows.
Theorem 5.4.3: If ¢(-) is the motion of a Lagrangian system with symmetry and
preserves the equivariant momentum map J(g,v,) = g, then its restriction, (-), on the
horizontal distribution determined by the mechanical connection satisfies the dynamic

equation

%DgLu(T, )t — Dy Lou(ryvp) - ur = F(r, o0+ I (M)]@(r) - wr 4+ Qu(r ) (ur, vr), (5.4.9)

where

Lu(ryvs) = 3K () (wn ) = (V) + 5 (n T5 (1)) (5.4.10)

and , is p-component of the curvature form of the mechanical connection. u

Having dynamic equation on the horizonltal distribution, we intend to drop the
dynamics of the system down to the base space Q/G,. To this end, we first define a
lift mapping from curves in base space to curves in total space. Let ¢(-) = {¢(t),t > 0}
be a curve in @ and z(-) be the bundle projection of ¢(-),i.e., z(-) = 7(g(-)). Define a

mapping (cross-section)

p:Q/G,— Q (5.4.11)
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such that 7(-) = p(z(+)) is a horizontal curve in @, i.e., at each t =1,

vr(8) = H(p(2(D)) - £(F) £ Tapp(a(®) - (D) € Hya(a)- (5.4.12)

If the principal bundle is a trivial one, the mapping H(r) has been given explicitly in

Remark 5.3.1. In particular, one can show that now the pull-down connection form &(z)
is of the form: i_l(w)J(m), where the map j(z) has been defined in Subsection 4.1.2.

With the above defined mappings, one can define the induced Riemannian metric,

potential function and p-locked inertia tensor on the base space B = Q/G,, as follows.

B(2)(vay ) = K (p(2))(H(p(2)) - vs, H(p(2)) - wa)  Yos,ws € TuB,

(5.4.13)
V(z) = (V o p)(2), (5.4.14)
1,(z) £ (L op)(a)- (5.4.15)

Remark 5.4.4: The above objects are well defined since they all are GG ,-invariant. W&
With these newly defined objects in B, the Lagrangian L, in (5.4.10) can also be
induced on B:
Ly(r,vr) =Ly(p(z), H(p(2)) - vz)
=S K(p(@))(H(p(2)) - 22, H(p(a)) - v2)
— (V{p(2) + 5 T (o))
= S R (@)(0er ) ~ V() + 5., (@)0))
2 I.(z,v0), (5.4.16)

which is a function defined on T(Q/G,).
Now we are ready to express (5.4.9) on the base space Q/G . Let u, = H(p(z)) ue

for any ug € Ty B. Then, the first term on the left-hand-side of (5.4.9) is
d d
4 DoLu(r(0), (1) - ur = SR (r())(0r(0), )

- () (Hp(a(r) v, Hlp(a(0) - v2)

T=

=%E($(t))(vx(t)’ ug) — K(p(z))(H{p(z)) - vz, _Z_tH(p(r(t))) . ux)
2%1325#@:,%) g = [K(r)(0ms (DH(E) - 01) - )l (5.417)
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A
where [ - J|rv, = [ - llr=p(z),0,=H(p(z))-v. - The second term of (5.4.9) can be expressed

explicitly as

Dy Ly(ryr) -ty = 5 (DK (r) - r) v, ) = D,V (r) - r = G (DI (1) - )

Here

(DrK(r) -ty )(vr, vr) =% K(r + eur)(vr, vy)

€=0

d

e=0
d

de| —

[E'(x + euy)(vg, vz)

— K (p(2))(H(p(z + eus)) - v, H(p(z + €uz)) - v,)]

:(D‘,L.I?(III) . uz)(vx, v(b‘)

- 2[1((7')('”1'7 (DqH(T) . ur) ’ vx)]lr,u,,ur s

A
where [ - ”r,unvr

approach, we have

D V(r)-u, = DV (z)- ug
DI, (r) - up = DI (2)" - g

Then, the second term of (5.4.9) now is of the form

DrLu(Ty 'vr) cUp = Dlzu(za vx) c U — [I\'(T)(v’r? (DqH(T) ) u’l‘) - vx)]lrvur,vr'

From (5.4.17) and (5.4.18), the left-hand-side of (5.4.9) becomes

£1—-D2L“(7'(t),vr(t)) “tp — DpLy(r,vp) 6ty =

dt
d _ ~ -
aDgLu(z,vz) gy — DiLy(z,vp) - up + T(2)(vgy g, V),

where

= [ - Nr=p(z),ur=H(p(z))-ue,vr=H(p(z))-v, - and, following the same

(5.4.18)

(5.4.19)

I(z)(vz, ug, v2) = [K(r)(vr, (DgH(7) - ur) - vz — (DgH(T) - vr) - uz)]lru, o, -

From the previous section, we have known that if the principal fiber bundle is a trivial

bundle,

[(DQH(T) ) U‘T) * U (DQH(T) : vr) ) u:z:)”r,u,,a.rr = Ver(['H(p(x)) cUg, H(P(l‘)) . ?)1.]).
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Note that a principal bundle is locally trivial. Thus, the above result is also true
in general. Since, for mechanical connection, the horizontal-vertical splitting is an

orthogonal one with respect to the Riemannian metric K, immediately, we have
T(z)(vg, ug,yvz) = 0. (5.4.20)

Return to the right-hand-side of (5.4.9). Recall that Q, is the p-component of

curvature form of the mechanical connection defined by

Qu(q)(vg, wy) = (1, Q(g)(vg, wq)), Vg, wg € TyQ.

Since Q is G,-equivariant, 2, is G-invariant. Therefore, using the lift mappings in

(5.4.11) and (5.4.12), we can define a two-form on base space B by

0,.(2)(uzs v2) = Qu(p(2))(H(p(2)) - ua H(p(a)) - v2)- (5.4.21)

Finally, using the G,-equivariant property of the exterior force (cf. (5.2.6)), we can

define exterior force on T B by

F(z,v2) 12 £ F(p(2), H(p()) - v, + (T, ()ula(p(e))) - (H(p(@)) - ua).  Vup € T,B
| (5.4.22)

From (5.4.19) - (5.4.22), we have the following theorem.
Theorem 5.4.5: If ¢(-) is a motion of Lagrangian system with symmetry and keeps
momentum map conserved, then its projection z(-) in /G, satisfies dynamic equation

d - ~ - -
£D2Lu($,vz) “ug — DyLy(z,vz) - up = Fz,v5)  ug + Qu(z)(ug, vz)

for any u, € T(Q/G,), where

~ 1 oyd ~ 1 ~-=1
Lu(z,vs) = 5K (2)(vz,v2) = (V(2) + 5{u, I, (2)n)),
F and ﬁ,i are defined in (5.4.22) and (5.4.21), respectively. |
Remarks 5.4.6:
(1) In the literature of the analytic mechanics, the reduction theory for Hamiltonian

systems has been well developed [26,28,29] and has been successfully applied

to many problems in engineering. However, since in many physical problems,
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Lagrangian dynamics is the natural starting point, the construction of a reduction
theory directly applicable to Lagrangian systems becomes a challenge. Recent work
done by Marsden and Scheurle [27], and Bloch and Crouch [7] have contributed to
this goal. In [27], the reduction is realized by including conservative gyroscopic
(magnetic) force into the variational principle in the sense of Lagrange and
d’Alembert. The main advantage of this approach is that the reduction procedure
is directly comparable with the one in Hamiltonian case.

(2) Once the motion of the system in @/G, is found, the motion of the system in @
can be determined using a reconstruction procedure, cf. [26].

(3) Lagrangian reduction can be applied to study the stability of relative equilibria of

various mechanical systems. For example, also see [27]. |

5.5 Examples

To illustrate the results of this chapter, we apply the theorems in this chapter to
some representative physical systems.

Example 5.5.1: Reduced dynamic equation for planar 3-body system.

In {34,43,44], the authors investigate the dynamics and control of planar multibody
systems. In particular, the relative equilibria and their stability are investigated using the
energy-Casimir method. Bifurcation phenomena are explored by standard methods in
Hamiltonian mechanics. Here, following [27], we shall use Lagrangian reduced dynamics
to compute the relative equilibria and then discover bifurcations via the movement of

the eigenvalues of the linearized dynamics at fundamental relative equilibria.

Consider a planar three-body system shown in Figure 5.5.1. The configuration
space now is S x S x §1 and the symmetry group is S!. Since S! is Abelian, we only
need to use the formula in Section 5.1 for reduction. The Lagrangian of this system,

after ignoring the potential, can be written as

.. 1. . .1 .
L(¢, ,63) = §¢TK11(¢)¢ + 0T K12(#)0s + 51\’22(@(93)2, (5.5.1)
where ¢ = (¢1,¢2)T . For the sake of simplicity, we assume the planar moments [; = 1

and the masses m; = 3, for 1 = 1,2,3. And, dy; = d23 = d3s = 1, but dyo =1>0
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Figure 5.5.1 A planar three-body systems

which is the only variable parameter for the system. Then, the matrices in (5.1.18) are

of the form
Kuu(d) = 612 +1 9lcos(¢r) + 612 + 1
AP \ 9lcos(r) + 612 +1  18lcos(¢y) + 61% + 20
Kia(e) = 3lcos(da + ¢1) + 9lcos(¢y) + 612 + 1
1Y)\ 3lcos(¢z + ¢1) + 9cos(ps) + 18lcos(éy) + 612 + 20

K22(¢) = 6lcos(ps + ¢1) + 18cos(dy) + 18lcos(¢py) + 61° 4 27.

Using the above matrices the reduced Lagrangian, p-component of the curvature form
and, consequently, the reduced dynamics can be easily determined from (5.1.14)-(5.1.16).
In particular, from (5.1.14), the equilibria of the reduced system are determined by the
critical points of K,9 which is just the locked inertia of the system. These equilibria
are the relative equilibria of unreduced system. It is readily seen that there are at
least four critical points for Kiq, that is, ¢ = {(0,0),(0,7),(r,0),(w,x)}, which are
called fundamental relative equilibria {43]. The stability of these equilibria can be easily
determined by looking at the spectrum of linearized equation of reduced dynamics. In
addition, we can also see the movement of the spectrum in response to change of certain
parameters (e.g., | ) and the bifurcation points. In the following, we study the linearized

equation at (m, ) only.
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One can show that the linearized equation at (7, 7) of the reduced dynamics is
Mé+ Ad =0, (5.5.2)

where

Moo (240 48P +521° -321+24 120*-481° + 621 - 2816
T\ 121 - 4813+ 6212 -281—-6 661*—2761°+ 50512 — 4521 4 177

and
(=204t lu?
A“( 1”2 1#2_3#‘2 .

Then, the eigenvalues of this system are the roots of the equation

det(A\*M + A) = 0.

X
Y

X
>

0<i<2 1=2 1>2

Figure 5.5.2 Eigenvalues of linearized equation

Figure 5.1.2 shows the positions of four eigenvalues in the complex plane for three
different values of /. Since the eigenvalues of the linearized system (5.1.19) are also the
eigenvalues of Hamiltonian system

¢=M"p

p=-Ag
for p = Mg, following the analysis in [34], bifurcation occurs at [ = 2 necessarily. In
fact, one can see this bifurcation from the contours of amended potential function shown

in Figure 5.1.3. |
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Figure 5.5.3 Contours of amended potential of planar 3-body system

Example 5.5.2: Rolling a homogeneous sphere on a rotating horizontal plane (32].

Let 0- XY Z be a coordinates system fixed in inertial space. Let a homogeneous

sphere roll without sliding on a plane (or platform) which rotates about the Z axis with

a constant angular velocity C, see Figure 5.5.4.

Since the sphere will not move along the Z direction, its configuration space is
R? x SO(3) which will be parametrized by (p, A), where p = (z,y) gives the location
of center of the sphere, or the contact point of the sphere and the plane, A gives the
orientation of the sphere relative to inertial space or coordinates system 0- XY Z. Let

¢ = (wg,wy,w;)T be the vector of angular velocity of the sphere in the inertial frame.

Then the Lagrangian of this system is

. . 1
L= §m(m2+y2)+—2—mk2(wi+w§+wg) -
1 . 1 e (5.5.3)
= §m(2':2 +9) + 5mk~((A, CA).
The rolling-without-sliding constraint on the sphere is given by two equations:

{i:—--awy-{-C’y=O

¥+ awy, - Cz = 0.
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Figure 5.5.4 Rolling a homogeneous sphere on a rotating plane.

We also assume that there is an exterior force, denoted by F = (Fy, Fy), acting at the
center of the sphere and along any direction perpendicular to Z axis, where F; and F,
can be any time dependent functions on TR?. It is clear that since there is no torque
along the Z axis, the angular velocity of the sphere about the Z axis is a constant,
denoted by c. As we did in the second part of Example 2.2.24, we assume the conserved

w, as an a prior: constraint. Then the constraint equations can be written as

¢ +8(p)v, = Ep), (5.5.4)
where v, = (,7)7,
0o 1 _ Cz/a
G(p) = (—% 0) and &(p) = Cy/a),
0 0 c
AT[C + B(p)vpl A = ATE(p)A. (5.5.5)

Define a right action of the Lie group SO(3) on @Q by
P:5083)xQ—@Q

(B (z,y,4)) — (2.4, AB).
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Then, it is easy to check that the left-hand-side of (5.5.5) defines a connection on the
right-principal fiber bundle p = (R?x .S0(3), R?, 7, 50O(3)), the right-hand-side of (5.5.5)
satisfies the Constraint Hypothesis 5.2.1 and Lagrangian in (5.5.3) is G -invariant. Since
all the conditions for reduction in Section 5.2 and 5.3 are satisfied with respect to the
right action, we can use Equation (5.3.37) or (5.3.38), taking care to change the order
of vectors in all Lie brackets, thereby obtaining the reduced dynamics on the base space
R?. Here, for convenience, we rewrite (5.3.38) with respect to right action as follows:

for any p € B,

& DyL(p,p) - up — D1 (B, ) - =F(p, )+ + dBe(p) (5 5)
+ D)y ) + (E(D)E), D) ()
+ 5 {(D51(p) - ) E(p), E(0))
+ (I(p)E(p). L&), &(p)us 1)
— E(p)(tp, vp), (5.5.7)
where

L(p, ) = 5 K(0)(wp ) = V(0),
Q(p)(p, vp) = d(p)(upy vp) + [E(P) - up, &(p) v 1,
T(p)(vp, p, vp) = K (p, €)([0p> =3(P) - V], [0, Up) (5, v5)]),
E(p)(upr vp) = K (0, €)([05, —(@(2)vp)), [0, [@(P), E(P) ] + Dpé(p) - up])
and, without change, F' and & are defined as in (5.3.24) and (5.3.26), respectively.
Let M = Diag(m,m,mk? mk?, mk?). Then L in (5.5.7) is

~ —~ 2 2
L= %vga(p)TMa(p)v,, = %mk +a (2% + 9%). (5.5.8)

a?

The other terms in (5.5.7) can be written as follows. Let u, = (uz,uy). Then
F(p,vp)up = Fyug + Fyuy,. (5.5.9)

Since in this case K and & do not depend on p, from (5.3.26), for any w = (wg, w,) €

T,B,

mk*C
al

we(p)(w) = (yws — zwy)
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and i(p) = mk?I3x3, which is a constant matrix. The Lie brackets in (5.5.7) have the

following form: letting {ej,e2,e3} be the standard basis for so(3),

(g, B(p)p | = 5 (G2 — g )es

and
(5] = e+ e, — = (ou, + yu)es.

Then, we have
dise(p)(up, vp) = 2mk20(uy:v - uz9), (5.5.10)
T(p)(vp, Up, vp) = 0, (5.5.11)
TGP, Tp) ) = " ), (5.5.12)
((Dpi(p)up)g(p),g(p)) =0, (5.5.13)
{(p)E(p),[E(p), B(p)u, 1) = 0, (5.5.14)
Z(p)(up, v,) = mk (e — C)(Jug — Tuy). (5.5.15)

Substituting (5.5.8)-(5.5.15) into (5.5.7), one gets

. . k*C a? k:C ; a® F,
Eug + Juy = (— 2+kzer TR m )x+( TRt E T Em Dyug, (5.5.16)
where u, and u, are arbitrary real numbers, or equivalently,
5= kK:C . + a? Fp
PRI L L Ny X (5.5.17)
. kK*C . a? F, e
i= -+

a2+k2z+ a’+k*m

If C =0, i.e., the platform does not rotate, Equation (5.5.16) leads to Equation (2.2.43)

in the example in Chapter II. If we assume F, = F,, = 0, the solution of (5.5.17) is
z(t) = yzgco.s(ﬁt) + x—osin(lt) - -:IZ?— + 2o

(5.5.18)

y(t) = ——co s(€t) + —sm(@t) + T + v,
where ¢ = 2+k2 and (zo,%0) and (@:O,yg) are initial position and initial velocity of
the center of the sphere. It is interesting to note that a trajectory of the center of

the sphere is always a circle. But, if we fix a coordinates system, say 0- X;Y;, on the
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rotating platform, the trajectory of the center of the sphere on this coordinates system,
or the trace of the contact point of the sphere on the platform, can be very complicated.
Figure 5.5.5 shows some cases for different choices of the parameters a and k. In these
examples, we choose zg = Yo = 0,20=1,9%=0,C=1.

Remark 5.5.3: Equation (5.5.17) is the same as the one in [32], which, however,
was derived from the total dynamics using so-called quasi-coordinates. In addition, this
system was not identified as a Chaplygin system in {32]. This is certainly not true if a

non-Abelian symmetry is considered, as we have shown above. |
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(4). @ =3.1415926,k = 1 (0 < t < 4.097/1)

Figure 5.5.5 Traces of contact point of sphere on the rotating plane, (3) and (4)
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CHAPTER VI

CONCLUSIONS AND
FUTURE RESEARCH

Up to now, we have explored various issues concerning with dynamic modeling and
kinematic control for constrained mechanical systems with symmetry. The fundamental
mathematical tools we applied are group theory, symplectic and Poisson geometry, the
theory of reduction in geometric mechanics and the connection theory in differential
geometry.

In Chapter II, we reformulate Lagrange-d’Alembert principle with constraints
using the classical notion of virtual displacemeﬂt for constrained systems and a modern
treatment of constraints by distributions,

In Chapter III, we rigorously studied the kinematics and dynamics of a particular
mechanical system with holonomic constraints: floating four-bar linkage. We have
revealed the kinematic and dynamic features of such system in comparison with the
systems without geometric constraints.

In Chapter IV, we formulated a kinematic control problem for the system consisting
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of a rigid body with two oscillators. From a Hamiltonian viewpoint, we explored
the reduction and explicit solvability of related optimal control problems on principal
bundles with connection. The necessary conditions for the optimal control problem were
determined intrinsically by a perturbation method and a Hamiltonian formulation. By
identifying the structure group of the principal bundle as a symmetry group of the system,
we were able to use the Poisson reduction procedure to reduce the order of differential
equations given by the corresponding necessary conditions. Under suitable hypotheses
and approximations, we found that the reduced system possesses additional Abelian
symmetry. Applying Poisson reduction again, we obtain a further reduced system and

corresponding first integral.

In Chapter V, we turned to the formulation of reduced dynamic equation for
nonholonomic Lagrangian systems with symmetry. Under our hypotheses on constraints
and exterior force, we showed that the dynamics of a nonholonomic Lagrangian system
with non-Abelian symmetry can be reduced to a lower dimensional space determined by
the principal fiber bundle. The reduced dynamic equations were formulated explicitly,
i.e., without Lagrange multipliers. This formulation generalizes the one for classical
Chaplygin' systems which possess Abelian symmetry, and the one having non-Abelian
symmetry but with linear constraints. In addition, if the mechanical connection of
Kummer and Smale is considered, our formulation for nonholonomic Lagrangian systems
specializes to the one in Lagrangian reduction discovered recently by Marsden and

Scheurle.

We end this chapter by introducing future research relating to the contents of this

dissertation.

Concerning the kinematic control problem, more general methods for complete
integrability of optimal control on principal bundles with connection will be further
investigated. Some methods to study general optimal control problems with nilpotent
control algebra may be exploited for this purpose [4,12]. On the application side, the
computation of geometric phase and related optimal control problems for more concrete

examples, such as a rigid body with flexible attachments, will be studied.
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In reduction theory for nonholonomic systems with symmetry we discovered in
Chapter V, a gyroscopic type of force appeared in the reduced dynamic equations. Unlike
the gyroscopic force coming from the linear term of of the Lagrangian (or internal effect
of the dynamics of the system) [50], this force comes from the nonholonomic constraints
(or external effect of the environment). Questions about the control of this type of
gyroscopic systems and the systems which also include the internal gyroscopic effects
will be answered in future research.

There are other types of constrained problems in analytical mechanics, such
as systems with Dirac constraints coming from degenerate Lagrangian [10,11] and
constrained Hamiltonian mechanical systems, in which the constraints are characterized
by the distributions on the cotangent bundle of configurations space [51]. How to deal
with reductions for the systems with these constraints is also one of our research interests
in the future.

Finally, we note that, in Chapter V, the number of constraint equations in our
Constraint Hypothesis is required to equal the dimension of the structure group of given

principal bundle. How to relax this condition will also be investigated.
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